LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Solid State Physics F0019T and F7006T

Examination date: 2015-06-05
The solutions are just suggestions. They may contain several alternative routes.
This is a combined solution for the courses F0019T and F7006T.
For F0019T use solution 1, 2, 3, 4 and 5.
For F7006T use solution $2,3,4,5$ and 6 with an offset of -1 .

1. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}+V(x) u(x)=E u(x),
$$

with $V(x)$ zero everywhere. Thus, the eigenvalue equation reads

$$
\frac{d^{2} u(x)}{d x^{2}}+k^{2} u(x)=0
$$

where $k^{2}=2 m E / \hbar^{2}$. The eigenfunctions are given by the plane waves $e^{i k x}$ and $e^{-i k x}$, or linear combinations of these, as e.g. $\sin k x$ and $\cos k x$.
(a) The wave function of the particle at $t=0$ is given by

$$
\psi(x, 0)=\cos ^{3}(k x)+\sin ^{3}(k x) .
$$

This is not an eigenfunction in itself but it can be written as sum of eigenfunctions using the Euler relations

$$
\begin{array}{r}
\psi(x, 0)=\left(\frac{e^{i k x}+e^{-i k x}}{2}\right)^{3}+\left(\frac{e^{i k x}-e^{-i k x}}{2 i}\right)^{3}= \\
\frac{1}{8}\left(e^{i 3 k x}+3 e^{i k x}+3 e^{-i k x}+e^{-i 3 k x}\right)-\frac{1}{8 i}\left(e^{i 3 k x}-3 e^{i k x}+3 e^{-i k x}-e^{-i 3 k x}\right)= \\
\frac{3}{4} \cos (k x)+\frac{1}{4} \cos (3 k x)+\frac{3}{4} \sin (k x)-\frac{1}{4} \sin (3 k x) \tag{3}
\end{array}
$$

Thus, $\psi(x, 0)$ can be written as a superposition of plane waves with two different values of $k_{1}=k$ and $k_{2}=3 k$.
(b) The energy of a plane wave $e^{i k x}$ is given by $E=\hbar^{2} k^{2} / 2 m$. Thus, the energy of $e^{i k_{1} x}$ (or $e^{-i k_{1} x}$) is $E_{1}=\hbar^{2} k^{2} / 2 m$ and the energy of $e^{i k_{2} x}$ (or $e^{-i k_{2} x}$) is $E_{2}=\hbar^{2} k_{2}^{2} / 2 m=9 \hbar^{2} k^{2} / 2 m$.
(c) The function $u(x)=e^{i k x}$ is a solution to the the time-independent Schrödinger equation. The corresponding solutions to the time-dependent Schrödinger equation are given by $u(x) T(t)$, with $T(t)=e^{-i E t / \hbar}$. Therefore, $u(x) T(t)=e^{i(k x-E t / \hbar)}$. A sum of solutions of this form is also a solution, since the Schrödinger equation is linear. This means that if $\psi(x, 0)$ is given by equation (3), then the time dependent solution is given by

$$
\begin{align*}
\psi(x, t)= & \frac{1}{8}\left(e^{i 3 k x}+e^{-i 3 k x}\right) e^{-i E_{2} t / \hbar}+\frac{3}{8}\left(e^{i k x}+e^{-i k x}\right) e^{-i E_{1} t / \hbar}+ \tag{4}\\
& -\frac{1}{8 i}\left(e^{i 3 k x}-e^{-i 3 k x}\right) e^{-i E_{2} t / \hbar}+\frac{3}{8 i}\left(e^{i k x}-e^{-i k x}\right) e^{-i E_{1} t / \hbar} \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
E_{1}=\frac{\hbar^{2} k^{2}}{2 m} \quad \text { and } \quad E_{2}=\frac{9 \hbar^{2} k^{2}}{2 m} \tag{6}
\end{equation*}
$$

2. (a) Rubidium has a bcc structure with a lattice constant $\mathrm{a}=5.590 \AA$ (conventional cell). The reciprocal lattice is hence an fcc with a with a size of $a_{\text {reciprocal }}=\frac{4 \pi}{a}$, see figure in collection of formulas. Γ is located at the origin and H is on the surface of the unit cube. The distance between Γ and N is the shortest distance from the origin (centre of Fermi sphere) to the surface of the BZ. This distance is $\frac{\pi}{a} \sqrt{2}=0.79510^{10} \mathrm{~m}^{-1}$
(b) The radius of the Fermi sphere is given by (2 electrons, bcc)
$k_{F}=\left(\frac{3 \pi^{2} N}{V}\right)^{1 / 3}=\left(\frac{3 \pi^{2} 2}{a^{3}}\right)^{1 / 3}=\left(\frac{3 \pi^{2} 2}{5.590^{3}} 10^{30}\right)^{1 / 3}=0.697210^{10} \mathrm{~m}^{-1}$ We conclude that $0.697<0.795$ ie. the Fermi sphere is inside the 1 BZ, $0.697 / 0.795=87.7 \%$.
3. Combining $\sigma=e\left(n \mu_{e}+p \mu_{h}\right)=1 / \rho$ and $n_{i}=p_{i}=2\left(\frac{k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}\left(m_{e} m_{h}\right)^{3 / 4} e^{-E_{g} / 2 k_{B} T}$ As the mobillity μ only depends algebraically on T the reistance will be dominated by the exponential. Hence we have $R \propto e^{E_{g} / 2 k_{B} T} \rightarrow \ln (R)=$ constant $+E_{g} / 2 k_{B} T$. Plotting $\ln (R)$ versus $1 / T$ will produce a straight line and from the slope $\left(E_{g} / 2 k_{B}=3917.82157\right)$ we calculate $E_{g} \approx 0.68 \mathrm{eV}$.
4. X-rays scatter against the electron distribution around the ions. In KCl the number the number of electrons around the K^{+}and Cl^{-}ion are equal. The X-rays do not see an FCC lattice with a basis of K^{+}and Cl^{-}ions but they see an SC lattice with similar electron distribution on each lattice site. Support motivations with Bragg scattering conditions and form factors.
5. $\sigma_{i}=n_{i} e \mu_{e}+p_{i} e \mu_{h}=n_{i}\left(\mu_{e}+\mu_{h}\right)$ och $n_{i}=2\left(\frac{k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3}{2}}\left(m_{e} m_{h}\right)^{\frac{3}{4}} e^{-E_{g} / 2 k_{B} T}$ insättning ger $n_{i}=7.34310^{-20} \mathrm{~m}^{-3} \Rightarrow \sigma_{i}=3.52910^{-39}(\Omega \mathrm{~m})^{-1}$. mycket mindre än det uppmätta. Om vi dopar blir konduktiviteten högre. Beteckna dopningskoncentrationen med $N_{d} . n=p+N_{d}$ och $n p=n_{i}^{2}$ ger ekv system för $p .\left(p+N_{d}\right) p=n_{i}^{2}$ och $p=-\frac{N_{d}}{2} \pm \sqrt{\left(\frac{N_{d}}{2}\right)^{2}+n_{i}^{2}} \approx 0 \Rightarrow n=N_{d}$ och därmed blir $\sigma=N_{d} e \mu_{e}$ och $N_{d}=\frac{\sigma}{e \mu_{e}} \approx 1.110^{6} \mathrm{~m}^{3}$.
6. (a) There are no free electrons at the Fermi surface. There is a band gap between valance and conduction band. Hence no electrons that can be in states where they can move so that the sum of k -vectors for all electrons becomes non-zero.
(b) DOS in the Debye approximation $D(\omega)=V \omega^{2} / 2 \pi^{2} v^{3}$, see page 122 CK.
(c) $U=\int d \omega D(\omega)\langle n(\omega)\rangle \hbar \omega=\ldots=\frac{3 V k_{D}^{4} T^{4}}{2 \pi^{2} v^{3} \hbar^{3}} \int_{0}^{x_{D}} d x \frac{x^{3}}{e^{x}-1}$. see page 122 CK. Gives T^{4} dependence.
(d) For phonons $C_{v}=234 N k_{B}\left(\frac{T}{\Theta}\right)^{3}$. For electrons $C_{v}=\frac{1}{2} \pi^{2} N k_{B} T / T_{F}$. On C / T graph versus T^{2} we get Θ from slope and ϵ_{F} from C / T at $T=0$. Start with Θ, slope is (21.5-8)/100
millijoule/mole K^{4} gives $\Theta^{3}=234 \cdot 6.02210^{23} 1.38110^{-23} \frac{100}{(21.5-8) 10^{-3}} \mathrm{~K}^{3}$
$\rightarrow \Theta=243.37 \mathrm{~K} \approx 240 \mathrm{~K}$ (from experiment $\Theta=275 \mathrm{~K}$.
$\frac{1}{2} \pi^{2} N k_{B} T / T_{F}=8 \frac{\mathrm{~mJ}}{\mathrm{~mol} \mathrm{~K}}$. Gives $T_{F}=5.1299610^{3} \mathrm{~K}$ and $e_{F}=k_{B} T_{F}=0.442 \mathrm{eV}$. A value given in books is $\epsilon_{F}=5.32 \mathrm{eV}$ a large difference from the fact that electrons are not at all free, see CK 155-157.
