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The solutions are just suggestions. They may contain several alternative routes.

1. (a) Rubidium has a bcc structure with a lattice constant a = 5.590 Å(conventional cell). The
reciprocal lattice is hence an fcc with a with a size of areciprocal =

4π
a
, see figure in collection

of formulas. Γ is located at the origin and H is on the surface of the unit cube. The
distance between Γ and N is the shortest distance from the origin (centre of Fermi sphere)
to the surface of the BZ. This distance is π

a

√
2 = 0.795 1010m−1

(b) The radius of the Fermi sphere is given by (2 electrons, bcc)
kF = (3π

2N
V

)1/3 = (3π
22

a3
)1/3 = ( 3π22

5.5903
1030)1/3 = 0.6972 1010m−1 We conclude that

0.697 < 0.795 ie. the Fermi sphere is inside the 1 BZ, 0.697/0.795 = 87.7 % .

2. For a metal the specific heat consists of two parts. One is the contribution from the electrons

Cf
v =

π2

2
NkB

T

TF
= γT,

and the other is the contribution from the lattice (phonons)

Cph
v =

12π4

5
NkB

T 3

Θ3
D

= αT 3.

The total specific heat is the sum of both contributions

Cv = Cph
v + Cf

v = γT + αT 3.

Hence, a graph of Cv

T
versus T 2 will produce a straight line. The intersection of the line at T = 0

will give γ and the slope will give α. From the slope α we find the Debey temperature ΘD. The
slope of the line in a graph of Cv/T vs T 2 is 0.609 .

ΘD =

(

12π4NkB
5α

)
1

3

= 148K

3. (a) Avst̊andet mellan (111)-plan i en kubisk kristall ges av d = a/
√
h2 + k2 + l2 = a/

√
3, vilket

är storleken p̊a den endimesionella kristallens primitiva enhetscell. Eftersom kristallen
inneh̊aller tv̊a typer av atomer har dispersionsrelationen en akustisk och en optisk gren.

(b) Serieutveckling av dispersionsrelationen för akustiska v̊agor ger

ω2 = C
M1 +M2

M1M2

− C

√

√

√

√

(

M1 +M2

M1M2

)2

− 4 sin2(Ka/2)

M1M2

≈

C
M1 +M2

M1M2





1−

√

√

√

√1− K2d2

M1M2

(

M1M2

M1 +M2

)2





 ≈ C
K2d2

2(M1 +M2)
.
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Detta ger

v =
∂ω

∂K
= d

√

C

2(M1 +M2)
⇒ C = 6(M1 +M2)

(

v

a

)2

= 13.8 N/m,

där massorna är 22.99u och 35.45u för natrium respektive klor.

(c) Konserveringslagarna är h̄ω = h̄Ω för energi och h̄k = h̄K för rörelsemängd. Eftersom
ljusets hastighet är mycket större än fononernas hastighet inses att fotonens
dispersionskurva måste vara mycket brantare än fononens. I praktiken blir den vertikal och
skär endast de optiska fononernas där K = 0. Detta ger

ω2 = 2C
M1 +M2

M1M2

⇒ λ =
2πc

ω
=

2πc
√

2C(M1 +M2)/M1M2

= 54.6 µm.

4. Same/similar as problem 4.4 in Bransden & Joachain. In the region where the potential is zero
(x < 0) the solutions are of the traveling wave form eikx and e−ikx, where k2 = 2mE/h̄2. A plane
wave ψ(x) = Aei(kx−ωt) describes a particle moving from x = −∞ towards x = ∞. The
probability current associated with this plane wave is
j = h̄

2mi
| A |2 (e−ikx ∂

∂x
e+ikx − e+ikx ∂

∂x
e−ikx) =| A |2 h̄

m
k =| A |2 v

A plane wave ψ(x) = Bei(−kx−ωt) describes a particle moving the opposite direction from x = ∞
towards x = −∞. The probability current associated with this plane wave is
j = h̄

2mi
| B |2 (e+ikx ∂

∂x
e−ikx − e−ikx ∂

∂x
e+ikx) = − | B |2 h̄

m
k = − | B |2 v

a Solution for the region x > 0 where the potential is V0 = 4.5eV. The potential step is larger
than the kinetic energy 2.0 eV of the incident beam. The particle may therefore not enter
this region classically. It will be totally reflected. In quantum mechanics we perform the
following calculation: The two solutions for the two regions are:

Ψ(x) =

{

Aeikx + Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceκx +De−κx for x > 0 where κ2 = 2m(V0 − E)/h̄2

we can put C = 0 as this part of the solution would diverge, and is hence not physical, as x
approaches ∞. At x = 0 both the wavefunction and its derivative have to be continous
functions, as the potential is everywhere finite. The derivative is:

∂Ψ(x)

∂x
=

{

Aikeikx − Bike−ikx

−Dκe−κx

At x = 0 we arrive at the following two equations:

{

A+B = D
iAk − iBk = −Dκ solving for







D
A
= 2k

k+κ

B
A
= k−iκ

k+iκ

solving for















D
A
= 2

1+i
√

V0/E−1

B
A
=

1−i
√

V0/E−1

1+i
√

V0/E−1

We can now calculate the coeficient of reflection, R The coeficients represent the following
amplitudes: A is the incident beam, B is the reflected beam and C is the transmitted
beam. The associated probability currents are denoted jA, jB and jC . Conservation yields
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jA = jB + jC . Hence we can define the coeficient of reflection as the fraction of reflected
flux R = |jB |

|jA| and the coeficient of transmission as T = |jC |
|jA|

{

R = |jB |
|jA| =

B2k
A2k

= 1

This is easily seen from the ratio B/A being the ratio of two complex number where one is
the complex conjugate of the other and therefore having the same absolute value.
Imidiately follows that T = 0 as the currents have to be conserved.

(b+c) Solution for the region x > 0 where the potential is V0 = 4.5eV. The potential step is
smaller than the kinetic energy 7.0eV or 5.0eV of the incident beam. The particle may
therefore enter this region classically. It will however lose some of its kinetic energy. In
quantum mechanics there is a probabillity for the wave to be reflected as well. The two
solutions for the two regions are:

Ψ(x) =

{

Aeikx +Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceik
′x +De−ik′x for x > 0 where k′2 = 2m(E − V0)/h̄

2

whe can put D = 0 as there cannot be an incident beam from x = ∞. At x = 0 both the
wavefunction and its derivative have to be continous functions. The derivative is:

∂Ψ(x)

∂x
=

{

Aikeikx − Bike−ikx

Cik′eik
′x

At x = 0 we arrive at the following two equations:

{

A+ B = C
Ak −Bk = Ck′

solving for







C
A
= 2k

k+k′

B
A
= k−k′

k+k′

solving for











C
A
= 2

√
E√

E+
√
E−V0

B
A
=

√
E−

√
E−V0√

E+
√
E−V0

The coeficients represent the following amplitudes: A is the incident beam, B is the
reflected beam and C is the transmitted beam. The associated probability currents are
denoted jA, jB and jC . Conservation yields jA = jB + jC . Hence we can define the
coeficient of reflection as the fraction of reflected flux R = |jB |

|jA| and the coeficient of

transmission as T = |jC |
|jA| For the two cases in part b and c the coeficients are:











R = |jB |
|jA| =

B2k
A2k

=
(

B
A

)2
=
(√

E−
√
E−V0√

E+
√
E−V0

)2
=
(√

5.0−
√
0.5√

5.0+
√
0.5

)2
= 0.26987

T = |jC |
|jA| =

C2k′

A2k
=
(

C
A

)2 √
E−V0√
E

=
(

2
√
E√

E+
√
E−V0

)2 √
E−V0√
E

=
(

2
√
5.0√

5.0+
√
0.5

)2 √
0.5√
5.0

= 0.73013











R = |jB |
|jA| =

B2k
A2k

=
(

B
A

)2
=
(√

E−
√
E−V0√

E+
√
E−V0

)2
=
(√

7.0−
√
2.5√

7.0+
√
2.5

)2
= 0.063437

T = |jC |
|jA| =

C2k′

A2k
=
(

C
A

)2 √
E−V0√
E

=
(

2
√
E√

E+
√
E−V0

)2 √
E−V0√
E

=
(

2
√
7.0√

7.0+
√
2.5

)2 √
2.5√
7.0

= 0.936563

The last result could also be reached by T +R = 1.

5. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the
time-independent Schrödinger equation

− h̄2

2m

d2u(x)

dx2
+ V (x)u(x) = Eu(x),
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with V (x) zero everywhere. Thus, the eigenvalue equation reads

d2u(x)

dx2
+ k2u(x) = 0,

where k2 = 2mE/h̄2. The eigenfunctions are given by the plane waves eikx and e−ikx, or linear
combinations of these, as e.g. sin kx and cos kx.

(a) The wave function of the particle at t = 0 is given by

ψ(x, 0) = cos3(kx) + sin3(kx).

This is not an eigenfunction in itself but it can be written as sum of eigenfunctions using
the Euler relations

ψ(x, 0) =

(

eikx + e−ikx

2

)3

+

(

eikx − e−ikx

2i

)3

= (1)

1

8

(

ei3kx + 3eikx + 3e−ikx + e−i3kx
)

− 1

8i

(

ei3kx − 3eikx + 3e−ikx − e−i3kx
)

= (2)

3

4
cos(kx) +

1

4
cos(3kx) +

3

4
sin(kx)− 1

4
sin(3kx) (3)

Thus, ψ(x, 0) can be written as a superposition of plane waves with two different values of
k1 = k and k2 = 3k.

(b) The energy of a plane wave eikx is given by E = h̄2k2/2m. Thus, the energy of eik1x (or
e−ik1x) is E1 = h̄2k2/2m and the energy of eik2x (or e−ik2x) is E2 = h̄2k22/2m = 9h̄2k2/2m.

(c) The function u(x) = eikx is a solution to the the time-independent Schrödinger equation.
The corresponding solutions to the time-dependent Schrödinger equation are given by
u(x)T (t),with T (t) = e−iEt/h̄. Therefore, u(x)T (t) = ei(kx−Et/h̄). A sum of solutions of this
form is also a solution, since the Schrödinger equation is linear. This means that if ψ(x, 0)
is given by equation (3), then the time dependent solution is given by

ψ(x, t) =
1

8

(

ei3kx + e−i3kx
)

e−iE2t/h̄ +
3

8

(

eikx + e−ikx
)

e−iE1t/h̄ + (4)

1

8i

(

ei3kx − e−i3kx
)

e−iE2t/h̄ − 3

8i

(

eikx − e−ikx
)

e−iE1t/h̄ (5)

where

E1 =
h̄2k2

2m
and E2 =

9h̄2k2

2m
(6)
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