LULEA UNIVERSITY OF TECHNOLOGY
Division of Physics

Solution to written exam in SOLID STATE PHYSICcS F0053T
Examination date: 2017-08-26
The solutions are just suggestions. They may contain several alternative routes.

1. (a) Rubidium has a bee structure with a lattice constant a = 5.590 A (conventional cell). The
reciprocal lattice is hence an fcc with a with a size of areciprocat = 47“, see figure in collection
of formulas. T" is located at the origin and H is on the surface of the unit cube. The
distance between I and N is the shortest distance from the origin (centre of Fermi sphere)
to the surface of the BZ. This distance is gx/ﬁ =0.795 10'm~*

(b) The radius of the Fermi sphere is given by (2 electrons, bec)

kp = (3TN)/3 = (3T2)1/3 = (2r21(30)1/3 = (.6972 10"m~" We conclude that

0.697 < 0.795 ie. the Fermi sphere is inside the 1 BZ, 0.697/0.795 = 87.7 % .

2. For a metal the specific heat consists of two parts. One is the contribution from the electrons
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and the other is the contribution from the lattice (phonons)
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The total specific heat is the sum of both contributions
C, = CP" + O =T 4 oT?.

Hence, a graph of % versus 1% will produce a straight line. The intersection of the line at T = 0
will give v and the slope will give a. From the slope o we find the Debey temperature ©p. The
slope of the line in a graph of C, /T vs T? is 0.609 .
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3. (a) Avstandet mellan (111)-plan i en kubisk kristall ges av d = a/v/h% + k2 + 2 = a//3, vilket
ar storleken pa den endimesionella kristallens primitiva enhetscell. Eftersom kristallen
innehaller tva typer av atomer har dispersionsrelationen en akustisk och en optisk gren.

(b) Serieutveckling av dispersionsrelationen for akustiska vagor ger
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Detta ger

Ow C v\ 2
v= 58 = amr s = C = 60 + 2)<a) 3.8 N/m,

dar massorna ar 22.99u och 35.45u for natrium respektive klor.

(c) Konserveringslagarna ér hw = hS) for energi och hk = hK for rérelseméngd. Eftersom
ljusets hastighet ar mycket storre an fononernas hastighet inses att fotonens
dispersionskurva maste vara mycket brantare an fononens. I praktiken blir den vertikal och
skar endast de optiska fononernas dar K = 0. Detta ger

M1+M2:>)\_27TC 2mc
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= 54.6 pm.

4. Same/similar as problem 4.4 in Bransden & Joachain. In the region where the potential is zero
(z < 0) the solutions are of the traveling wave form e** and e~** where k? = 2mE/h*. A plane
wave P (z) = Aelhr=wt) describes a particle moving from z = —oo towards z = co. The
probability current associated with this plane wave is
j= % | A |2 (e—ikx%e-ﬂ'k’x _ e—s—ikza%e—z‘ka:) :| A |2 %k :| A ‘2 v

A plane wave 1(z) = Be!(=F*=%t) describes a particle moving the opposite direction from z = oo

towards x = —oo. The probability current associated with this plane wave is
j:ﬁ|B|2(e+ikx[%6—ikx_e—ika:a%ﬂeﬂkz):_|B|2%k:_|B|2U

a Solution for the region x > 0 where the potential is Vj = 4.5eV. The potential step is larger
than the kinetic energy 2.0 eV of the incident beam. The particle may therefore not enter
this region classically. It will be totally reflected. In quantum mechanics we perform the
following calculation: The two solutions for the two regions are:

¥(z) = Aek*  Be=**  for 1 <0 where k?>=2mE/h?
T | Ce 4 De " for x>0 where s?=2m(Vy— E)/h’

we can put C' = 0 as this part of the solution would diverge, and is hence not physical, as x
approaches co. At x = 0 both the wavefunction and its derivative have to be continous
functions, as the potential is everywhere finite. The derivative is:
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At x = 0 we arrive at the following two equations:
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We can now calculate the coeficient of reflection, R The coeficients represent the following
amplitudes: A is the incident beam, B is the reflected beam and C' is the transmitted
beam. The associated probability currents are denoted j4,jp and jo. Conservation yields



Ja = jB + jc. Hence we can define the coeficient of reflection as the fraction of reflected

flux R = “Bll and the coeficient of transmission as 1" = ‘I;il‘

_ lisl _ B _
This is easily seen from the ratio B/A being the ratio of two complex number where one is
the complex conjugate of the other and therefore having the same absolute value.
Imidiately follows that T'= 0 as the currents have to be conserved.

(b+c) Solution for the region x > 0 where the potential is V = 4.5eV. The potential step is
smaller than the kinetic energy 7.0eV or 5.0eV of the incident beam. The particle may
therefore enter this region classically. It will however lose some of its kinetic energy. In
quantum mechanics there is a probabillity for the wave to be reflected as well. The two
solutions for the two regions are:

¥(z) = Aet*® 4 Be=**  for 2 <0 where k?=2mE/h?
| Ce*T 4 Dem** for x>0 where k'2=2m(E —V;)/h?

whe can put D = 0 as there cannot be an incident beam from z = co. At x = 0 both the
wavefunction and its derivative have to be continous functions. The derivative is:
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At x = 0 we arrive at the following two equations:
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The coeficients represent the following amplitudes: A is the incident beam, B is the
reflected beam and C' is the transmitted beam. The associated probability currents are
denoted j4, 75 and jo. Conservation yields j4 = jg + jo. Hence we can define the
coeficient of reflection as the fraction of reflected flux R = BB" and the coeficient of
transmission as 7' = % For the two cases in part b and ¢ the coeficients are:

R=lisl _ 2% _ (B)* _ (VE- W) (F F) = 0.26987
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The last result could also be reached by 7'+ R = 1.

5. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the
time-independent Schrodinger equation
n d®u(z)

" om da?

+ V(z)u(x) = Eu(x),



with V' (z) zero everywhere. Thus, the eigenvalue equation reads

d*u(x)

2 T ku(x) =0,

where k? = 2mFE/h*. The eigenfunctions are given by the plane waves ¢** and e~ or linear
combinations of these, as e.g. sin kx and cos kz.

(a) The wave function of the particle at ¢ = 0 is given by
Y(z,0) = cos®(kx) + sin® (k).

This is not an eigenfunction in itself but it can be written as sum of eigenfunctions using

the Euler relations
eikx + e—ikx 3 eikm _ e—ik:v 3
0= |—"" ) = 1

1 13kx ikx —ikx —i3kx 1 i3kx ikx —ikx —i3kx\ __

§<e + 3™+ 3" +e )—g(e — 3" 43" —e )— (2)
3 1 3 . 1.
2 cos(kx) + 1 cos(3kx) + 1 sin(kz) — 1 sin(3kx) (3)

Thus, ¥ (x,0) can be written as a superposition of plane waves with two different values of
]{31 =k and ]{32 = 3k.

(b) The energy of a plane wave ¢** is given by E = h?k?/2m. Thus, the energy of ¢*1® (or
e~ k1) is B = h*k?/2m and the energy of e*2® (or e~*2?) is By = h%k2/2m = 9h°k?/2m.

(c) The function u(z) = € is a solution to the the time-independent Schrédinger equation.
The corresponding solutions to the time-dependent Schrodinger equation are given by
w(z)T(t),with T(t) = e *#¥/" Therefore, u(x)T(t) = e!**=FEt/") A sum of solutions of this
form is also a solution, since the Schrodinger equation is linear. This means that if ¢ (x,0)
is given by equation (3), then the time dependent solution is given by

U(z,t) = é (ei3kz + e—iSkm) e~ B2t/h : (eikﬂc + 6—ikr) e iEt/h (4)
812' (€i3kx . €—i3kx) e~ iBat/h sz (6ikaz _ e—ik:c) e iE1t/h (5)

where . e
Ey = o and Fy = 5 (6)



