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Solution to written exam in Solid State Physics F0053T and F7045T
Examination date: 2016-05-31
The solutions are just suggestions. They may contain several alternative routes.
This is a combined solution for the courses F0053T and F7045T.
For F0053T use solutions 1, 2, 4, 5 and 3.
For F7045T use solutions 4, 5, 6, 7 and 3.

1. As we are dealing with a carbon rich area we as a first guess go for carbon with just one electron
left (= hydrogen like). The Carbon ion has Z = 6 and hence energys En = −488.16

n2 eV. Try to
find a start of the series. The energy of λ = 207.80nm is
E = hν = hc

λ
= 6.626·10−34·2.9979·108

207.80·10−9·1.6022·10−19 = 5.9663eV A similar calculation gives the energys for the
other lines in the series: 9.56395, 11.8989 and 13.4997 eV.

As the Balmer series in Hydrogen is for transitions down to level n=2 we have to go higher up
for the Carbon ion as the energys for the level n = 2 in Carbon would be far to large.

Using the fact that can assume levels are adjecent we let n be the quantum number for the lower
level and m for a level above, we have no knowledge of how n and m relate. We know however
that for the next level (higher in energy) we have n and m+ 1. One can form the following two
equations 5.9663eV=488.16( 1

n2 − 1
m2 )eV and 9.56395eV=488.16( 1

n2 − 1
(m+1)2 )eV ie we only need

two of the lines to form an appropriate set of equations. (You can use the other pairs of lines as
well to form two equations.) Subtracting one equation from the other to eliminat n you get
3.59765=488.16( 1

m2 − 1
(m+1)2 ) and 1

m2 − 1
(m+1)2 = 0.007369817273025237627 solving for m you

arrive at m = 6. Now we use the result for m in 5.9663eV=488.16( 1
n2 − 1

62 )eV to solve for n and
we arrive at n = 5.

Then there is the tour of brute force ie just trial and error: If we try n=5 we have transitions
from m=6, 7, 8, 9, etc. The corresponding energys will be: 488.16( 1

52 − 1
62 )=5.97 eV, the next

one will be: 488.16( 1
52 − 1

72 )=9.56 eV, 488.16( 1
52 − 1

82 )=11.899 eV and so on. So these are down
to n=5 from level m=6, 7, 8 and 9.

2. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in

terms of eigenfunctions. The eigenfunctions are (PH) ψ(x) =
√

2
a

sin(nπx
a

). We can directly
conclude that the given wave function consists of eigenfunctions with n = 1 and n = 5, we
can write:

ψ(x, 0) =
A
√

2√
2a

sin
(
πx

a

)
+

√
2√

2 · 5a
sin

(
5πx

a

)
=

A√
2
ψ1(x, 0) +

1√
10
ψ5(x, 0)

As both eigenfunctions are orthonormal the normalisation integral reduces to A2

2
+ 1

10
= 1

and hence A =
√

18
10

=
√

9
5

= 3√
5

(b) The wave function contains only n = 1 and n = 5 eigenfunctions and therefore the only

possible outcomes of an energy meassurement are E1 = h̄2π2

2ma2 with probability A2

2
= 0.9 and

E5 = h̄2π2

2ma2 25 with probability 1 - 0.9 = 0.1 . The average energy is given by

< E >= 0.9E1 + 0.1E5 = h̄2π2

2ma2 (0.9 + 0.1 · 25) = 3.4 · h̄2π2

2ma2 = 1.7 · h̄2π2

ma2
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(c) The time dependent solution is given by Ψ(x, t) =
∑∞
n=1 cnψn(x)e−iEnt/h̄ and hence

Ψ(x, t) =

√
9

10
ψ1(x, 0)e−i

h̄π2t
2ma2 +

1√
10
ψ5(x, 0)e−i

25h̄π2t
2ma2

3. The Angle β = 2θ.

β θ sin2 θi/ sin2 θ1 Xi (hkl)

30.3 15.15 1.00 2 (110)
43.4 21.7 2.00 4 (200)
53.9 26.95 3.00 6 (211)
63.1 31.55 4.00 8 (220)
71.6 35.8 5.00 10 (310)
79.7 39.85 6.00 12 (222)
87.6 43.8 7.00 14 (321)

It is not possible to find integers that gives Xi = h2 + k2 + l2 = 7. Therefore the values are
multiplied by two. We see that all planes have h+ k + l = 2n (even integer), which means that
the structure is bcc.

4. Cv = Cel
v + Cph

v . As the temperature in question (300K) is well above the Debye temperature
(160K) we can use Dulong-Petits law for the phonons Cph

v = 3NkB. For the electron

contribution Cel
v = π2

2
NkB

T
TF

, TF = EF/kB and EF = h̄2

2m

(
3π2N
V

)2/3
. For Na we have

ρ = 971kg/m3, atomic weight = 22.9898u some calculations gives TF = 36599.353K. Fraction

contributed by the electrons: F = Celv
Celv +Cphv

= 1

1+
6TF
π2T

≈ 0.0133.

5. (a) Primitiva enhetscellen: Al fcc: 1, Cr bcc: 1, Germanium diamantstruktur: 2.

(b) Kubiska enhetscellen: Al fcc: 4, Cr bcc: 2, Germanium diamantstruktur: 8.

(c) Germanium diamant struktur med kantlängden a = 5.658Å p̊a enhetskuben. Närmsta
grannar i tex. (0,0,0) och (1

4
, 1

4
, 1

4
) detta avst̊and =

√
3a/4 = 2.45Å. Näst närmsta grannar i

tex. (0,0,0) och (1
2
, 1

2
, 0) detta avst̊and =

√
2a/2 = 4.00Å.

6. (a) Ed = − mee4

2h̄2(4πεrε0)2 = 6.6 10−4eV.

(b) r = εrh̄
2

mee2
4πε0 = 642 Å.

(c) Överlappet blir betydande om koncentrationen Nd ∼ 1
(2r)3 ≈ 1021m−3.

(d) I likhet med hur atomära niv̊aer bildar band d̊a atomer sammanförs till en kristall kommer
donator niv̊aerna att bilda band d̊a koncentrationen blir s̊a stor att de lokala banorna
överlappar.
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7. The conductivity is given by σ = neµe + peµh. Asuming we are in the intrinsic regime we have
for the denisty of electrons n = p = ni and hence the resistance is given by

R ∝ 1/σ ∝ ni ∝ eEg/2kBT .

We only keep track of the exponentials and assume the algebraic expresion in T in ni does not
change alot compared to the exponential. If the sample is intrinsic will show in a graph of ln(R)
vs 1/T .

To analyse the data we note that

ln(R) ∝ Eg
2kB

1

T
.

In the table below data is processed accordingly:

T (oC) R T (K) 1/T ln(R)

22.0 182 295 3.390 · 10−3 5.204
48.0 92.0 321 3.115 · 10−3 4.522
72.0 53.0 345 2.899 · 10−3 3.970
97.0 32.0 370 2.703 · 10−3 3.466
127 17.2 400 2.500 · 10−3 2.845

If we draw ln(R) as a function of 1/T and if the data follows a straight line we calculate its slope.

Eg
2kB

=
5.204− 2.845

(3.390− 2.500) · 10−3
= 2650.6

and hence we can calculate Eg accordingly:

Eg =
2650.6 · 2 · 1.38 · 10−23

1.602 · 10−19
= 0.457eV.

Eg = 0.46eV
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