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Solution to written exam in Solid State Physics F0053T and F7045T
Examination date: 2017-06-02
The solutions are just suggestions. They may contain several alternative routes.
This is a combined solution for the courses F0053T and F7045T.
For F0053T use solutions 1, 2, 3, 6 and 7.
For F7045T use solutions 1, 2, 3, 4, and 5.

1. (a) The primitive vectors (â1 and â2) are: For structure A â1 = a and â2 = b. For structure B
(the same as A) â1 = a and â2 = b. For structure C â1 = 1

2
(a+ b) and â2 = 1

2
(a− b).

(b) For a direct lattice the relation âi · â∗j = 2πδij defines the reciprocal lattice. As â1 and â2

are at right angles the reciprocal lattice vectors for structure A are â∗1 = 2π â1
|â1|2 and

â∗2 = 2π â2
|â2|2 . The vectors â1

|â1| and â2
|â2| are unit vectors.

(c) The general reciprocal lattice vector is Ĝ = nâ∗1 +mâ∗2. The scattering relation is
k − k′ = ∆k = Ĝ. The reciprocal vector can be written as
Ĝ = n2π â1

â1·â2 +m2π â2
â1·â2 = n2πî/a2 +m2πĵ/a1, where î is a unit vector in the direction of

â1 and ĵ is a unit vector in the direction of â2. The desired form is Ĝ = n2πî/a2 +m2πĵ/a1.

2. (a) From the graph it is evident that this experiment has been done at very low temperatures.
One may assume that the temperature is well below the Debye temperature. The specific
heat Cv will have a phonon contribution and a contribution from the free electrons:
Cv = Cel

v + Cph
v . The phonon contribution is (at low temperatures):

Cph
v = 12π4

5
NkB

(
T

ΘD

)3
= AT 3. The free electron contribution is: Cel

v = π2

2
NkB

T
TF

= γT ,

TF = EF/kB

We draw a graph of Cv/T against T 2 accordingly Cv
T

= 12π4

5Θ3
D
NkBT

2 +
π2Nk2B

2EF
= γ + AT 2.

This will be a straight line in a graph of Cv/T against T 2.

(b) The Debye temperature ΘD can be determined from the slope A = 2.57mJ/mole K4.
12π4

5Θ3
D
NkB = A, solving for ΘD gives ΘD = 91.1K

(c) From the intersection with the C/T axis we get γ = 2.08mJ/mole K2. From this we get EF
accordingly to γ = π2

2
NkB

kB
EF

where EF = 2.7209 · 10−19J = 1.698eV.

From crystal structure data we can calculate EF Potassium has a BCC lattice with

a = 5.225Å. εF = h̄2

2m

(
3π2N
V

) 2
3

Now can calculate for the electron mass

m = h̄2

2εF

(
3π2N
V

) 2
3 = (1.055·10−34)2

2·1.698·1.601·10−19

(
3π2·2

(5.225·10−10)3

) 2
3 = 1.138508 · 10−30kg = 1.25m0

3. All have mono atomic cubic structure. Structure factor
SG(v1v2v3) =

∑
j fje

−i2π(v1xj+v2yj+v3zj), BCC has atoms at x1 = y1 = z1 = 0 and
x2 = y2 = z2 = 1

2
, diffraction condition S = 0 if v1 + v2 + v3 = odd integer, and

S = 2f if v1 + v2 + v3 = even integer.
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FCC has atoms at 000, 01
2

1
2
, 1

2
01

2
, 1

2
1
2
0, diffraction condition

S = 4f if v1, v2, v3are all even integers or are all odd integers, and
S = 0 if one or two of v1, v2, v3are even integers. The possible hkl are 111, 200, 220, 311, 222,
400 ...

And finally diamond (not primitive) is an FCC structure with basis consisting of two sites
000, 1

4
1
4

1
4

ie a total of 8 sites (conventional cube) at 000, 01
2

1
2
, 1

2
01

2
, 1

2
1
2
0, 1

4
1
4

1
4
, 1

4
3
4

3
4
, 3

4
1
4

3
4
, 3

4
3
4

1
4
. For

Diamond an extra term is multiplied onto the FCC structure factor this consists of
(1 + e−i

π
2

(h+k+l)) this will make some of the FCC lines to dissapear when it is zero. The
condition is π

2
(h+ k + l)) = π(odd integer). The possible hkl are 111, 220, 311, 400, ... (Note

the missing 200: 2+0+0 = 2 where 2/2 = 1 is an odd integer and 222: 2+2+2=6 where 6/2=3
is an odd integer.)

Braggs diffraction condition is 2d(hkl) sin(θ) = λ where d(hkl) = a/
√
h2 + k2 + l2.

(a) Start sorting out the bcc lattice (fcc and diamond are similar) and calculate ratios for,
sin(θ1)
sin(θ2)

=

√
h21+k21+l21√
h22+k22+l22

, smallest angles, (110) and (200) give ratio
√

2√
4

= 0.707. sin(42.2/2)
sin(49.2/2)

= 0.865

and sin(28.8/2)
sin(41.0/2)

= 0.710 and sin(42.8/2)
sin(73.2/2)

= 0.612. Sample B is BCC check also sin(28.8/2)
sin(50.8/2)

= 0.580

and
√

2√
6

= 0.577 seems fine. Now we have two samples left try them out for FCC smallest

angle n = 1, (111) and (200) give ratio
√

3√
4

= 0.866. we see directly that sample A is FCC
this means that sample C has to be diamond.
A=fcc, B=bcc, C=diamond.

(b) Calculate a from Braggs diffraction condition we get a = λ
√
h2 + k2 + l2/2 sin(θ). This

gives with λ = 1.5Å. For bcc we get a = 1.5
√

2/2 sin(28.8/2) = 4.26Å. Simmilary we arrive
at afcc = 3.61Å and for diamond structure (111) gives the smallest angle adiamond = 3.56Å
(formfactor SG = 4f(1 + i)).

4. Varje molekyl ger 6 elektroner detta ger tätheten n = 6 · 6.0231023 · 880/0.078 = 4.077 · 1028m−3.
hexagonen approximeras med en cirkel, omkrets = 6 x 1.4 Å= 2πr och r2 = (3 · 1.4/π)2. Detta
ger (CK sid 419)
χ = −4.077 · 1028 · (1.60 · 10−19)24π · 10−7(3 · 1.410−10/π)2/(6 · 9.1 10−31) = 4.310−6

5. (a) At the maximum of absorption the photons have sufficient energy to excite electrons from
the valence band to empty states just above the edge of the valence band. The energy of
the Acceptor states is given by the photon energy Ea = hc

λ
with λ = 59.1µm we get

Ea = 0.021eV

(b) At room temperature Troom = 300K we have kBTroom = 0.021eV and hence all acceptor
states are ionised ie NO ABSORPTION (all acceptor states have already an electron so
they are already occupied and the photons cannot excite an electron to already filled
levels). The experiment is performed at very low temperatures (liquid He).

(c) Photons with λ = 1700Å have the energy Ea = hc
λ

= 7.3eV. This tells us the following
about the bandgaps:

E
window glass
g < 7.3eV < E

quarts glass
g
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6. (a) ih̄ ∂2

∂t2
cosωt = −ih̄ω ∂

∂t
sinωt = −ih̄ω2 cosωt YES

(b) ∂
∂x
eikx = ikeikx YES

(c) ∂
∂x
e−ax

2
= −2axe−ax

2
NO

(d) ∂
∂x

cos kx = −k sin kx NO

(e) ∂
∂x
kx = k NO

(f) P̂ sin(kx) = sin(−kx) = − sin(kx) YES

(g) −ih̄ ∂
∂z
C(1 + z2) = −ih̄C(0 + 2z) NO

(h) − h̄
2
∂
∂z
Ce−3z = − h̄

2
C(−3)e−3z ∝ ψ(z) YES

(i) C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 =? This has to be done in some steps. Start by doing this derivative

first: − ∂2

∂z2
ze−

1
2
z2 = − ∂

∂z
(e−

1
2
z2 − z2e−

1
2
z2) = −(−ze− 1

2
z2 − 2ze−

1
2
z2 + z3e−

1
2
z2) =

3ze−
1
2
z2 − z3e−

1
2
z2 .

Now you go back to the start: C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 = C

2
(z3e−

1
2
z2 + 3ze−

1
2
z2 − z3e−

1
2
z2) =

C
2

(+3ze−
1
2
z2) = ∝ ψ(z) YES

7. (a) The total wave function has to be normalised which implies that the sum of the squared
coefficients equals one. A2(22 + 32 + 11 + 12) = 1 resulting in A2 = 1

15
and hence A = 1√

15
.

(b) The probability is given by the absolute square of the coefficients.
(Ψ(r, t = 0) = 1√

15
(2ψ100(r)− 3ψ210(r) + ψ320(r)− ψ322(r)))

The probabilities are (in order) 4
15

, 9
15

, 1
15

, 1
15

. as a check they sum up to 1 as they should
do.

(c) The energy of a single eigenstate is given by: En = −13.56
n2 eV. The expectation value is

given by < E >= 4
15

(−13.56
12

) + 9
15

(−13.56
22

) + 1
15

(−13.56
32

) + 1
15

(−13.56
32

) =
−13.56( 4

15
+ 9

60
+ 1

135
+ 1

135
) = −13.56233

540
= −5.807868 ≈ −5.81 eV

The operator L2 has eigenvalues h̄2l(l + 1). The expectation value is given by
< L2 >= 4

15
· 0 + 9

15
· (h̄21(1 + 1)) + 1

15
(h̄22(2 + 1)) + 1

15
(h̄22(2 + 1)) = 30

15
h̄2 = 2h̄2

The operator Lz has eigenvalues h̄ml. The expectation value is given by
< Lz >= 4

15
· 0 + 9

15
· 1h̄+ 1

15
· 0 + 1

15
(2h̄) = 11

15
h̄
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