
LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Solution to written exam in Solid State Physics F0053T and F7045T
Examination date: 2018-06-02
The solutions are just suggestions. They may contain several alternative routes.
This is a combined solution for the courses F0053T and F7045T.
For F0053T use solutions 1, 2, 3, 6 and 7.
For F7045T use solutions 1, 2, 3, 4, and 5.

1. (a) The primitiva unit cell: Cu fcc: 1, K bcc: 1, Po sc: 1.

(b) The cubic unit cell: Cu fcc: 4, K bcc: 2, Po: 1.

(c) Copper has fcc structure with a side length of the unit cube cell of a = 3.61Å. Nearest
neighbours like (0,0,0) and (1

2
, 1
2
, 0) have a distance of

√
2a
2

= a√
2

= 2.55Å. Next nearest

neighbours like (0,0,0) and (0, 0, 1) have a distance a = 3.61Å.

2. Cv = Cel
v + Cph

v . As the temperature in question (300K) is well above the Debye temperature
(160K) we can use Dulong-Petits law for the phonons Cph

v = 3NkB. For the electron

contribution Cel
v = π2

2
NkB

T
TF

, TF = EF/kB and EF = ~2
2m

(
3π2N
V

)2/3
. For Na we have

ρ = 971kg/m3, atomic weight = 22.9898u some calculations gives TF = 36599.353K. Fraction

contributed by the electrons: F = Celv
Celv +Cphv

= 1

1+
6TF
π2T

≈ 0.0133.

3. Stephane: Svaret p̊a c fr̊an annan uppgift. I c startar man fr̊an cv data.

(a) We start to determine vsph first. Data for: Ar has fcc structure and a = 5.31Å. One mole
contains 6.0221 · 1023 atoms. In the Debye approximation we have for the specific heat Cv

Cv =
12π4

5
NkB

(
T

Θ

)3

(1)

where kB = 1.3807 10−23 J/K is Boltzmanns constant and Θ is the Debye temperature.
Start to determine Θ from the slope of the line, slope = 2.57269 mJ/mol K4.

Θ =3

√
12π4NkB
5 · slope

= 91.0801K (2)

From the Debye temperature Θ we can determine the velocity of sound.

Θ =
~vsph
kB

3

√
N6π2

V
(3)

and we solve for vsph

vsph =
ΘkB
~

3

√
V

N6π2
= 1023 m/s ≈ 1.0 km/s (4)
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(b) Now we continue with the phonon dispersion figure, and we restrict it to the part of the
figure marked by [ 1 0 0 ]. As the frequency ω is related to the wavevector k by

ω = kvdisp (5)

for small k we have to determine the slope of the dispersion graph for small k and we have
vdisp.

The meaning of [ 1 0 0 ] is the direction we go from k = 0 out to the Brillouin zone
boundary. The direction is given in conventional cube directions. Referring to Fig 15 page
43 Kittel this means going from the centre along the x (or y or z) direction to the small
square on the side of the conventional cube. The separation between [ 1 0 0 ] planes in an
fcc structure is a/2 and hence the zone boundary is at 2π/a and therefore kmax = 2π/a at
the zone boundary.

i. line with large slope. At ε = 10.0MeV the reduced k/kmax = kred is 0.80 and we get

v1 =
ε a

~ 2 π kred
=

10.0 10−31.60218 10−195.31 10−10

1.05457 10−340.80π2
m/s = 1604.9465 m/s ≈ 1.60 km/s

(6)

ii. line with small slope. At ε = 10.0MeV reduced kred is 1.13 and we get

v2 =
ε a

~ 2 π kred
=

10.0 10−31.60218 10−195.31 10−10

1.05457 10−341.13π2
m/s = 1136.2453 m/s ≈ 1.14 km/s

(7)

(c) We see that vsph and the vdisp agree fairly well. One expects vsph to be somewhere in the
range of vdisp. However from web-elements
(http://www.shef.ac.uk/chemistry/web-elements/) we find (bulk properties) vsound = 319
m/s in agreement with the calculation for vdisp. For other inert gases we find He 970 m/s,
Ne 936 m/s, Kr 1120 m/s and Xe 1090 m/s. So Argon seems to be an outsider, but one has
to be careful how the experiments are done in detail (here we have single crystal properties).

4. The number of Bohr magnetons is given by p = g
√
J(J + 1) where g = 1 + J(J+1)+S((S+1)−L(L+1)

2J(J+1)
.

ml

-3 -2 -1 0 1 2 3
S L J g p

Cr3+ d3 ↑ ↑ ↑ 3/2 3 3/2 2/5 0,775

Cu3+ d9 ↑ ↑↓ ↑↓ ↑↓ ↑↓ 1/2 2 5/2 1,2 3,55

Tb3+ f8 ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ 3 3 6 3/2 9,72

5. (a) Germanium is a semiconductor with a band gap of Eg = 0.67eV. Doping it with
Phosphorus (P) that is an element VI element, that makes it a donor impurity. The
ionization energy is 12.0 meV. As room temperature is about 25 meV this will ionize all the
donor atoms. The molar weight of Germanium is MGe = 72, 64g/mole and for Phosphorus
it is MP = 30, 97g/mole. Density of Germanium ρGe = 5323kg/m3.
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Calculate the number of donor atoms

Nd = 3.191mg =
6, 022 10233.191 10−3

30, 97
= 6.20478 1019 (8)

The volume of one kg of Germanium is VGe = 1
5323

= 1.87864 10−4m3.

At room temperature all donors are ionized. The density of ionized donors will be

N+
d =

6.20478 1019

1.87864 10−4
= 3.3028 1023m−3. (9)

The condition for neutrallity is
n = N+

d + p. (10)

The law of mass action gives:

n ∗ p = n2
i = 4(

kBT

2π~2
)3(memh)

3/2e−Eg/kBT (11)

ni = 2(
1.3806 10−23293

2π 1.0542 10−68
)3/2(1.2 0.2)3/4(9.1094 10−31)3/2e−(0.67 1.6022 10−19/2 1.3806 10−23 293)

(12)
ni = 1.4373 1019m−3. (13)

We see that ni << N+
d and using equation 10 we conclude that all electrons in the

conduction band originate from ionized donors. Ie n ≈ N+
d and p ≈ 0.

(b) donor and n type

(c) For the graph.
I In the high tempertures behaviour will be intrinsic n = p = ni ∝ e−Eg/2kBT and n > N+

d .
II For a intermediate temperature range (including room temperature) the n and p will be
fairly constant, n ≈ N+

d and p ≈ 0.
III As temperature is lowered further the concentrations will change as electrons are cought
by the ionized donors. As temperature is lowered n ≈ N+

d will go to zero exponentially.

6. (a) i~ ∂2
∂t2

sinωt cosωt = i~ω ∂
∂t

(cos2 ωt− sin2 ωt) = −i~ω22(sinωt cosωt) ∝ ψ(t) YES

(b) i~ ∂2
∂t2

(cos2 ωt− sin2 ωt) = −i~ω4 ∂
∂t

(sinωt cosωt) = −i~ω24(cos2 ωt− sin2 ωt) ∝ ψ(t) YES

(c) ∂
∂x

sin kx = k cos kx � ψ(x) NO

(d) ∂
∂x
kx2 = k2x � ψ(x) NO

(e) C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 =? This has to be done in some steps. Start by doing this derivative

first: − ∂2

∂z2
ze−

1
2
z2 = − ∂

∂z
(e−

1
2
z2 − z2e− 1

2
z2) = −(−ze− 1

2
z2 − 2ze−

1
2
z2 + z3e−

1
2
z2) =

3ze−
1
2
z2 − z3e− 1

2
z2 .

Now you go back to the start: C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 = C

2
(z3e−

1
2
z2 + 3ze−

1
2
z2 − z3e− 1

2
z2) =

C
2

(+3ze−
1
2
z2) = ∝ ψ(z) YES

(f) ∂
∂x

(eikx + e−ikx) = ik(eikx − e−ikx) � ψ(x) NO

(g) P̂ cos(kx) = cos(−kx) = cos(kx) = ψ(x) YES

(h) −~
2
∂
∂z
Ce−ωz = −~

2
C(−ω)e−ωz ∝ ψ(z) YES
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(i) −i~ ∂
∂z
C(1 + z3) = −i~C(0 + 3z2) � ψ(z) NO

7. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− ~
2

2m

d2

dx2
Ψ(x, y)− ~2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− ~
2

2m

d2

dx2
ψx(x)− ~2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− ~
2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

~2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(
Ψ(−a

2
) = Ψ(a

2
) = 0

)
into

account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the

condition
∫ a/2
−a/2 | Ψ |

2 dx = 1. The condition sin(ka
2

) = 0 gives ka
2

= π
2
∗ (even− integer). The

solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 2, 4, 6, ... (14)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√
2

a
cos(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 3, 5, ... (15)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En +Emwhere n = 1, 2, , . and m = 1, 2, , . (16)

In the area where the potential is infinite the wave function is equal to zero.
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An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 2, 3, ... (17)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√
2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 2, 3, ... (18)

ψn(x) =
√

2
a

sin(nπx
a

+ nπ
2

) =
√

2
a

(
sin(nπx

a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)
. We see that we recover

the solution in eq (14), (15) and (16) as we let n run from 1 to ∞.

b) Now we turn to the question of parity, ie whether the wave function is odd or even under a
change of coordinates from (x, y) to (−x,−y). The one dimensional eigenfunctions in eq (14)
and (15) have a definite parity. The functions in (14) are odd whereas the functions in (15) are
even. As the eigenstates for the 2 dimensional system are formed from eq (16) ie products of
functions that are even or odd the total function itself will be either even or odd as well.

The four lowest eigenenergies are given by

En,m =
π2~2

2Ma2
(n2 +m2), where the 4 lowest are (n2 +m2) = 2, 5, 8, 10.

When we form the eigenstates we need to keep track of the parity of the ψn(x) and ψm(y). It is
therefore necessary to have the functions in the form like in eq (14) and (15) to identify the
parity as odd or even. This is difficult if you try with functions like eq (18) even though it is a
correct eigenstate it is hard to identify their parity.

E1,1 = one state (n2 +m2 = 2) even * even = even

E1,2 = E2,1 = two states (n2 +m2 = 5) odd * even = odd

E2,2 = one state (n2 +m2 = 8) odd * odd = even

E1,3 = E3,1 = two states (n2 +m2 = 10) even * even = even

So of the four energys (states) only one is odd and three are even.
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