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Solution to written exam in Solid State Physics F0053T and F7045T
Examination date: 2018-10-26
The solutions are just suggestions. They may contain several alternative routes.
This is a combined solution for the courses F0053T and F7045T.
For F0053T use solutions 1, 2, 3, 6 and 7.
For F7045T use solutions 1, 2, 3, 4, and 5.

1. (a) The primitive vectors (â1 and â2) are: For structure A â1 = a and â2 = b. For structure B
(the same as A) â1 = a and â2 = b. For structure C â1 = 1

2
(a+ b) and â2 = 1

2
(a− b).

(b) For a direct lattice the relation âi · â∗j = 2πδij defines the reciprocal lattice. As â1 and â2

are at right angles the reciprocal lattice vectors for structure A are â∗1 = 2π â1
|â1|2 and

â∗2 = 2π â2
|â2|2 . The vectors â1

|â1| and â2
|â2| are unit vectors.

(c) The general reciprocal lattice vector is Ĝ = nâ∗1 +mâ∗2. The scattering relation is
k − k′ = ∆k = Ĝ. The reciprocal vector can be written as
Ĝ = n2π â1

â1·â2 +m2π â2
â1·â2 = n2πî/a2 +m2πĵ/a1, where î is a unit vector in the direction of

â1 and ĵ is a unit vector in the direction of â2. The desired form is Ĝ = n2πî/a2 +m2πĵ/a1.

2. För GaAs (fcc) är strukturfaktorn:
S =

[
fGa + fAse

−iπ
2

(h+k+l)
]
∗
[
1 + e−iπ(h+k) + e−iπ(h+l) + e−iπ(k+l)

]
denna ger de vanliga fcc

vilkoren

S = 0, if (hkl) är en blandning av jämna och udda tal.
6= 0 för övriga kombinationer

Ger Miller indexen för GaAs: (111), (200), (220), (311), (222), (400), (331).

För kisel (diamant) är strukturfaktorn:
S = fSi

[
1 + e−i

π
2

(h+k+l)
]
∗
[
1 + e−iπ(h+k) + e−iπ(h+l) + e−iπ(k+l)

]
ett sätt att se det

S = 0, om h+k+l = 2 + 4n
= 0, om (hkl) blandning av jämna/udda tal
6= 0 för övriga kombinationer

alternativt sätt att se det
S 6= 0, om om (hkl) alla är udda
6= 0, om (hkl) alla är jämna och h+k+l = 4n
= 0 för övriga kombinationer

Ger Miller indexen för kisel: (111), (220), (311), (400), (331). Notera att (200) och (222) inte
finns med.

3. For a metal the specific heat consists of two parts. One is the contribution from the electrons

Cf
v =

π2

2
NkB

T

TF
= γT,
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and the other is the contribution from the lattice (phonons)

Cph
v =

12π4

5
NkB

T 3

Θ3
D

= αT 3.

The total specific heat is the sum of both contributions

Cv = Cph
v + Cf

v = γT + αT 3.

Hence, a graph of Cv
T

versus T 2 will produce a straight line. The intersection of the line at T = 0
will give γ and the slope will give α. From the slope α we find the Debey temperature ΘD. The
slope of the line in a graph of Cv/T vs T 2 is 0.609 .

ΘD =

(
12π4NkB

5α

) 1
3

= 148K

4. (a) At the maximum of absorption the photons have sufficient energy to excite electrons from
the valence band to empty states just above the edge of the valence band. The energy of
the Acceptor states is given by the photon energy Ea = hc

λ
with λ = 59.1µm we get

Ea = 0.021eV

(b) At room temperature Troom = 300K we have kBTroom = 0.021eV and hence all acceptor
states are ionised ie NO ABSORPTION (all acceptor states have already an electron so
they are already occupied and the photons cannot excite an electron to already filled
levels). The experiment is performed at very low temperatures (liquid He).

(c) Photons with λ = 1700Å have the energy Ea = hc
λ

= 7.3eV. This tells us the following
about the bandgaps:

E
window glass
g < 7.3eV < E

quarts glass
g

5. We have ni = pi = 2
√

kBT
2π~2 (memh)

3/4e−Eg/2kBT = 1.44 · 1015 m−3. This gives

σ0 = neµe + peµh = 4.86 · 10−5Ω−1 m−2 for pure silicon. Sb is a donor and the concentration of
donor atoms is Nd = 10−6 · 8

a3
= 4.99 · 1022 m−3. We also have the relations np = n2

i = p2
i and

p+N+
d = n+N−a . With N−a = 0 and N+

d = Nd, this gives n2 −Ndn− n2
i = 0. Since Nd >> ni,

we get n ≈ Nd and p ≈ 0. Finally, we calculate σ = neµe + peµh = 1.28 · 103Ω−1 m−2 = 26 · 106σ0.

6. (a) Let the commutator act on a wave function Ψ(x) and px = −i~ d
dx

[x2, p2
x]Ψ(x) = −~2(x2 d

2Ψ(x)
dx2
− d2(x2Ψ(x))

dx2
) = −~2

(
x2 d

2Ψ(x)
dx2
− x2 d

2Ψ(x)
dx2
− 4xdΨ(x)

dx
− 2Ψ(x)

)
=

+~22Ψ(x) + 4x~2 dΨ(x)
dx

= (+~22 + i4~xpx) Ψ(x) concluding for the commutator:
[x2, p2

x] = +2~2 + 4i~xpx .

(b) The energy levels for a hydrogen like system are given by: En = −13.6Z
2

n2 [eV], here we have
Z = +3 : ∆E = E(2s)− E(1s) = E2 − E1 = −13.54 · ( 9

22
− 9

12
) = 13.54 · 27

4
= 91, 53 eV
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(c) The angular part of the wave function can be written as a spherical harmonic:

3 cos2 θ − 1 ∝ Y20

Which gives l = 2 och m = 0. The part depending on r (r2/a2
µ)e−r/3aµ corresponding to the

principal quantum number n = 3 och l = 2 consistent with Y20.

7. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− ~2

2m

d2

dx2
Ψ(x, y)− ~2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− ~2

2m

d2

dx2
ψx(x)− ~2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− ~2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

~2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(
Ψ(−a

2
) = Ψ(a

2
) = 0

)
into

account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the

condition
∫ a/2
−a/2 | Ψ |

2 dx = 1. The condition sin(ka
2

) = 0 gives ka
2

= π
2
∗ (even− integer). The

solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 2, 4, 6, ... (1)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√
2

a
cos(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 3, 5, ... (2)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (3)
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In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 2, 3, ... (4)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√
2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 2, 3, ... (5)

ψn(x) =
√

2
a

sin(nπx
a

+ nπ
2

) =
√

2
a

(
sin(nπx

a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)
. We see that we recover

the solution in eq (1), (2) and (3) as we let n run from 1 to ∞.

b) The ground state eigenfunction is given by (using eq. (2))

Ψn=1,m=1(x, y) = ψ1(x) · ψ1(y) =

√
2

a
cos(

πx

a
) ·
√

2

a
cos(

πy

a
) (6)

The next lowest state eigenfunction is given by (using eq. (2) and (1)). Note there are two
eigenfunctions with the same energy (Ψn=1,m=2(x, y)) you may use either one of them.

Ψn=2,m=1(x, y) = ψ2(x) · ψ1(y) =

√
2

a
sin(2

πx

a
) ·
√

2

a
cos(

πy

a
) (7)

Orthogonality is defined as∫
x

∫
y

Ψn1,m1(x, y)Ψn2,m2(x, y) = δn1,n2 δm1,m2 (8)

by explicit calculation∫ a/2

x=−a/2

∫ a/2

y=−a/2

(
2

a
cos(

πx

a
) · cos(

πy

a
)

)
·
(

2

a
sin(2

πx

a
) · cos(

πy

a
)

)
= calculations = 0 (9)

this is a separable integral (in x and y), suggestion do the integral in x first as this will be zero
as they belong to different eigenvalues. Thus the calculation ends with a zero as it should.
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