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Solution to written exam in Solid State Physics F0053T and F7045T
Examination date: 2019-06-07
The solutions are just suggestions. They may contain several alternative routes.
This is a combined solution for the courses F0053T and F7045T.
For F0053T use solutions 1, 2, 3, 6 and 7.
For F7045T use solutions 1, 2, 3, 4, and 5.

1. (a) From the graph it is evident that this experiment has been done at very low temperatures.
One may assume that the temperature is well below the Debye temperature. The specific
heat Cv will have a phonon contribution and a contribution from the free electrons:
Cv = Cel

v + Cph
v . The phonon contribution is (at low temperatures):

Cph
v = 12π4

5
NkB

(
T

ΘD

)3

= AT 3. The free electron contribution is: Cel
v = π2

2
NkB

T
TF

= γT ,

TF = EF/kB

We draw a graph of Cv/T against T 2 accordingly Cv
T

= 12π4

5Θ3
D
NkBT

2 +
π2Nk2B

2EF
= γ + AT 2.

This will be a straight line in a graph of Cv/T against T 2.

(b) The Debye temperature ΘD can be determined from the slope A = 2.57mJ/mole K4.
12π4

5Θ3
D
NkB = A, solving for ΘD gives ΘD = 91.1K

(c) From the intersection with the C/T axis we get γ = 2.08mJ/mole K2. From this we get EF
accordingly to γ = π2

2
NkB

kB
EF

where EF = 2.7209 · 10−19J = 1.698eV.

From crystal structure data we can calculate EF Potassium has a BCC lattice with

a = 5.225Å (PH) or a = 5.23Å (Fysika). The Fermi energy is given by εF = ~2
2m

(
3π2N
V

) 2
3
.

Now we can calculate for the electron mass

m = ~2
2εF

(
3π2N
V

) 2
3

= (1.05457·10−34)2

2·1.698·1.6022·10−19

(
3π2·2

(5.225·10−10)3

) 2
3

= 1.138508 · 10−30kg = 1.25m0

We may also calculate N
V

as follows. In Fysika we find the density ρ = 862kg/m−3 and the

molar weight M = 39, 0938g/mole. N
V

= ρNA
M

862·6.02214·1023

39,0938·10−3 = 1.327854 · 1028m−3.

Now we can calculate for the electron mass

m = ~2
2εF

(
3π2N
V

) 2
3

= (1.05457·10−34)2

2·1.698·1.6022·10−19 (3π2 · 1.327854 · 1028)
2
3 = 1.096934 · 10−30kg = 1.204m0

2. Använd Braggs lag för att bestämma miller indexen (hkl) för topparna. d = λ/(2 sin(β/2)) där

d är plan avst̊andet och β/2 = θ. Vidare har vi för planavst̊andet
(
dhkl
a

)2
= 1

h2+k2+l2
där a är

enhetskubens kantlängd (ej känd). Följande tabell görs upp för att bestämma h2 + k2 + l2 för
topparna. V̊aglängden för Kα = 1,542Å. Det kan vara sv̊art att avgöra vilken topp som är först i
spektrat. Vi satsar till at börja med att den första är den kraftiga toppen vid 31 grader. De tv̊a
första försöken (f1 och f2 i tabellen) visar att det blir ingen ordning p̊a siffrorna. Tredje försöket
(f3) där fungerar det.
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(β) 27.50 31.04 45.60 56.58 66.34 75.36 84.06
(θ = β/2) 13.75 15.52 22.80 28.29 33.17 37.68 42.03

d 3.2438 2.8814 1.9896 1.6268 1.4092 1.2613 1.1516
1/d2 0.095038 0.12045 0.25262 0.37786 0.50356 0.62858 0.75404

f1 x = 2/0.12045 2.0000 4.1946 6.2741
f2 x = 3/0.12045 3.0000 6.2919 9.4112
f3 x = 3/0.095038 3.0000 3.8021 7.9741 11.9276 15.8955

integers 3 4 8 12 16

Sista raden i tabellen ger de sökta heltalen h2 + k2 + l2.

En analys av strukturfaktorn för de 4 kubiska gittren ger (räkningar erfodras se tex Kittel) ger 4
serier av till̊atna (hkl) index. För fcc är denna serie:

(hkl) 111 220 311 222 400 331 422 511 333
h2 + k2 + l2 3 8 11 12 16 19 24 27 27

Vi ser att det saknas ett plan, det som ger 11 dvs 311 relexionen. En inspektion av spektrat ser
man att det finns en svag topp vid β = 54.00. En analys ger d = 1.69827 och 1/d2 = 0.34672 för
att ge 10.945 vilket motsvarar den saknade linjen i tabellen. S̊a pulvret best̊ar av ett material
med fcc struktur. Att tv̊a linjer syns s̊a svagt beror p̊a att det finns flera atomer i den primitiva
cellen.

Även a l̊ater sig bestämmas till
√

3 · 3.2438 = 5.616Å (tabell 5.6402 Å), det fr̊agas dock ej efter
denna uppgift, provet bestod av NaCl ett material med fcc struktur och 2 atomer i den primitiva
cellen.

3. (a) Potassium has a bcc structure with a lattice constant a = 5.225 Å(conventional cell). The
reciprocal lattice is hence an fcc with a with a size of areciprocal = 4π

a
, see figure in collection

of formulas. Γ is located at the origin and H is on the surface of the unit cube. The
distance between Γ and N is the shortest distance from the origin (centre of Fermi sphere)
to the surface of the BZ. This distance is π

a

√
2 = π

5.225·10−10
√

2 = 0.8503 · 1010m−1

Some sources state a=5.328 Å. This distance is π
a

√
2 = π

5.328·10−10
√

2 = 0.8339 · 1010m−1

(b) The radius of the Fermi sphere is given by (2 electrons, bcc) for the a = 5.225Å.
kF = (3π2N

V
)1/3 = (3π22

a3
)1/3 = ( 3π22

5.2253
1030)1/3 = 0.74599 1010m−1. We conclude that

0.74599 < 0.8503 ie. the Fermi sphere is inside the 1 BZ, 0.74599/0.8503 = 87.7 % .
The radius of the Fermi sphere is given by (2 electrons, bcc) for the a = 5.328Å.
kF = (3π2N

V
)1/3 = (3π22

a3
)1/3 = ( 3π22

5.3283
1030)1/3 = 0.7316 1010m−1. We conclude that

0.7316 < 0.834 ie. the Fermi sphere is inside the 1 BZ, 0.7316/0.834 = 87.7 % . The same
as expected.

4. As this is not a problem concerned with to much accuracy you may set ~ = 1 · 10−34Js.

a) For the valence band we have ε = −~2k2
2mh

and hence we have mh = +5 · 10−32kg,

b) For the valence band we have εh = ~2k2
2mh

and hence we have

εh = +10−19J,
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c) For the hole momentum we have ph = −~k and hence we have

ph = −10−25k̂xkg m/s,

d) For the hole velocity we have vh = 1
~
dε
k

and hence we have

vh = −2 · 106k̂xm/s

5. The conductivity is given by σ = neµe + peµh. Asuming we are in the intrinsic regime we have
for the denisty of electrons n = p = ni and hence the resistance is given by

R ∝ 1/σ ∝ ni ∝ eEg/2kBT .

We only keep track of the exponentials and assume the algebraic expresion in T in ni does not
change alot compared to the exponential. If the sample is intrinsic will show in a graph of ln(R)
vs 1/T .

To analyse the data we note that

ln(R) ∝ Eg
2kB

1

T
.

In the table below data is processed accordingly:

T (oC) R T (K) 1/T ln(R)

22.0 182 295 3.390 · 10−3 5.204
48.0 92.0 321 3.115 · 10−3 4.522
72.0 53.0 345 2.899 · 10−3 3.970
97.0 32.0 370 2.703 · 10−3 3.466
127 17.2 400 2.500 · 10−3 2.845

If we draw ln(R) as a function of 1/T and if the data follows a straight line we calculate its slope.

Eg
2kB

=
5.204− 2.845

(3.390− 2.500) · 10−3
= 2650.6

and hence we can calculate Eg accordingly:

Eg =
2650.6 · 2 · 1.38 · 10−23

1.602 · 10−19
= 0.457eV.

Eg = 0.46eV

6. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in
terms of eigenfunctions (here particle in a box). The eigenfunctions are (PH)

ψn(x) =
√

2
a

sin(nπx
a

). We can directly conclude that the given wave function consists of

n = 1, n = 5 and n = 7 functions, we can write:

ψ(x, 0) =

√
13√
8a

sin
(πx
a

)
+

1

2
√
a

sin

(
5πx

a

)
+

A√
a

sin

(
7πx

a

)
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ψ(x, 0) =

√
13
√

2

4
√
a

sin
(πx
a

)
+

√
2

2
√

2 · a
sin

(
5πx

a

)
+

A
√

2√
2 · a

sin

(
7πx

a

)
=

√
13

4
ψ1(x, 0) +

1√
8
ψ5(x, 0) +

A√
2
ψ7(x, 0)

As all three eigenfunctions are orthonormal the normalisation integral reduces to
13
16

+ 1
8

+ A2

2
= 1 and hence A = 1√

8
(≈ 0.354).

(b) The wave function contains only n = 1, n = 5 and n = 7 eigenfunctions and therefore the
only possible outcome of an energy meassurement are E1 = ~2π2

2ma2
with probability 13

16
and

E5 = ~2π2

2ma2
25 with probability 1

8
and E7 = ~2π2

2ma2
49 with probability 1

16
.

The average energy is given by
< E >= 13

16
E1 + 1

8
E5 + 1

16
E7 = ~2π2

2ma2
(13

16
+ 1

8
· 25 + 1

16
· 49) = 112

16
· ~2π2

2ma2
= 7 · ~2π2

2ma2

(c) The time dependent solution is given by Ψ(x, t) =
∑∞

n=1 cnψn(x)e−iEnt/~ and hence

Ψ(x, t) =

√
13

16
ψ1(x, 0)e−i

~π2t
2ma2 +

1√
8
ψ5(x, 0)e−i

25~π2t
2ma2 +

1

4
ψ7(x, 0)e−i

49~π2t
2ma2

7. The Carbon ion has Z = 6 and hence the energys levels are En = −488.16
n2 eV for a carbon ion

with just one electron (Hydrogen like). Try to find a start of the series. In order to do that we
calculate the energys of the spectral lines. The energy of a spectral line has to be matched to a
energy difference between two levels of the Carbon ion. The energy of λ = 207.80nm is
E = hν = hc

λ
= 6.626·10−34·2.9979·108

207.80·10−9·1.6022·10−19 = 5.9663eV . A similar calculation gives the energy for the
other lines in the series: 9.56395, 11.8989 and 13.4997 eV.

As the Balmer series in Hydrogen is for transitions down to level n=2 we (see from En) have to
go higher up in n for the Carbon ion as the energys for a transition to the level n = 2 in Carbon
would be far to large.

We can solve the problem in two ways either in a sofisticated way or by brute force.

The sofisticated way. Using the fact that can assume levels are adjecent we let n be the quantum
number for the lower level and m for a level above, we have no knowledge of how n and m
relate. We know however that for the next level (higher in energy) we have down to n from level
m+ 1. One can form the following two equations

5.9663eV = 488.16(
1

n2
− 1

m2
)eV and

9.56395eV = 488.16(
1

n2
− 1

(m+ 1)2
)eV

we only need two of the lines to form an appropriate set of equations. (You can use the other
pairs of lines as well to form two equations.) Subtracting one equation from the other to
eliminate n you get 3.59765=488.16( 1

m2 − 1
(m+1)2

) and finally
1
m2 − 1

(m+1)2
= 0.007369817273025237627. Solving for m you arrive at m = 6. If you do not want

to solve the equation above you just try some different values of m untill you find m = 6 that
solves the equation. Now we use the result for m in 5.9663eV=488.16( 1

n2 − 1
62

)eV to solve for n
and we arrive at n = 5.
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Then there is also the tour of brute force ie just trial and error: If we try n=5 we have
transitions from m=6, 7, 8, 9, etc. The corresponding energys will be: 488.16( 1

52
− 1

62
)=5.97 eV,

the next one will be: 488.16( 1
52
− 1

72
)=9.56 eV, 488.16( 1

52
− 1

82
)=11.899 eV and so on. So these

are down to n=5 from level m=6, 7, 8 and 9.
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