LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Solid State Physics, F7006T

Examination date: 2016-03-15
The solutions are just suggestions. They may contain several alternative routes.

1. Cu has $\mathrm{FCC}(\mathrm{a}=3.61 \AA)$ structure and hence are the primitive basis vectors: $a=\frac{a}{2}(1,1,0)$, $b=\frac{a}{2}(1,0,1)$ and $c=\frac{a}{2}(0,1,1)$. For BZ we have primitive basis vectors: $a^{*}=\frac{2 \pi}{a}(-1,-1,1)$, $b^{*}=\frac{2 \pi}{a}(-1,1,-1)$ and $c^{*}=\frac{2 \pi}{a}(1,-1,-1)$.
The BZ is a BCC structure $K_{B Z}=\frac{1}{2}\left|a^{*}\right|=\frac{\pi \sqrt{3}}{a} \approx 1.5073 \cdot 10^{10} \mathrm{~m}^{-1}$.
$K_{F}=\left(3 \pi^{2} N\right)^{1 / 3}=\left(\frac{3 \pi^{2} 4}{a^{3}}\right)^{1 / 3} \approx 1.36036 \cdot 10^{10} m^{-1}$ and hence $\frac{K_{F}}{K_{B Z}}=\frac{\left(12 \pi^{2}\right)^{1 / 3}}{\pi \sqrt{3}} \approx 0.90$. The Fermi sphere does not intercept the BZ and one can use the free electron model.
2. (a) Au has FCC structure, the primitive unit cell contains 1 atom and the cubic unit cell contains 4 atoms.
Mo has BCC structure, the primitive unit cell contains 1 atom and the cubic unit cell contains 2 atoms.
Si has FCC structure with a basis of two atoms at $(0,0,0)$ and $\frac{a}{4}(1,1,1)$, the primitive unit cell contains 2 atoms and the cubic unit cell contains 8 atoms.
(b) See above
(c) Nearest neighbour distance r_{0} in Si is $\frac{a \sqrt{3}}{4}, \mathrm{a}=5.43 \AA$ gives $r_{0} \approx 2.35 \AA$. Next nearest distance is $\frac{a}{\sqrt{2}} \approx 3.84 \AA$.
3. $C_{v}=C_{v}^{e l}+C_{v}^{p h}$. As the temperature in question (300K) is well above the Debye temperature (160K) we can use Dulong-Petits law for the phonons $C_{v}^{p h}=3 N k_{B}$. For the electron contribution $C_{v}^{e l}=\frac{\pi^{2}}{2} N k_{B} \frac{T}{T_{F}} \quad, T_{F}=E_{F} / k_{B}$ and $E_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{3 \pi^{2} N}{V}\right)^{2 / 3}$. For Na we have $\rho=971 \mathrm{~kg} / \mathrm{m}^{3}$, atomic weight $=22.9898 \mathrm{u}$ some calculations gives $T_{F}=36599.353 \mathrm{~K}$. Fraction contributed by the electrons: $F=\frac{C_{l}^{e l}}{C_{v}^{e l}+C_{v}^{p h}}=\frac{1}{1+\frac{6 T_{F}}{\pi^{2} T}} \approx 0.0133$.
4. X-rays scatter against the electron distribution around the ions. In KCl the number the number of electrons around the K^{+}and Cl^{-}ion are equal. The X-rays do not see an FCC lattice with a basis of K^{+}and Cl^{-}ions but they see an SC lattice with similar electron distribution on each lattice site. Support motivations with Bragg scattering conditions and form factors.
5. Combining $\sigma=e\left(n \mu_{e}+p \mu_{h}\right)=1 / \rho$ and $n_{i}=p_{i}=2\left(\frac{k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}\left(m_{e} m_{h}\right)^{3 / 4} e^{-E_{g} / 2 k_{B} T}$ As the mobillity μ only depends algebraically on T the reistance will be dominated by the exponential. Hence we have $R \propto e^{E_{g} / 2 k_{B} T} \rightarrow \ln (R)=$ constant $+E_{g} / 2 k_{B} T$. Plotting $\ln (R)$ versus $1 / T$ will produce a straight line and from the slope $\left(E_{g} / 2 k_{B}=3917.82157\right)$ we calculate $E_{g} \approx 0.68 \mathrm{eV}$.
