LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics MTF067

Examination date: 2000-12-18

1. Hydrogenic atoms have eigenfunctions $\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \varphi)$. Using the Collection of formulae we find

$$
\begin{aligned}
& \psi_{100}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-Z r / a_{0}} \\
& \psi_{200}(\boldsymbol{r})=\left(\frac{Z^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \\
& \psi_{210}(\boldsymbol{r})=\left(\frac{Z^{3}}{32 \pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{a_{0}} \cos \theta e^{-Z r / 2 a_{0}} \\
& \psi_{21 \pm 1}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{8 a_{0}} \sin \theta e^{ \pm i \varphi} e^{-Z r / 2 a_{0}}
\end{aligned}
$$

where a_{0} is the Bohr radius. The β-decay instantaneously changes $Z=1 \rightarrow Z=2$. According to the expansion theorem, it is possible to express the wave function $u_{i}(\boldsymbol{r})$ before the decay as a linear combination of eigenfunctions $v_{j}(\boldsymbol{r})$ after the decay as

$$
u_{i}(\boldsymbol{r})=\sum_{j} a_{j} v_{j}(\boldsymbol{r})
$$

where

$$
a_{j}=\int v_{j}^{*}(\boldsymbol{r}) u_{i}(\boldsymbol{r}) d^{3} r .
$$

The probability to find the electron in state j is given by $\left|a_{j}\right|^{2}$.
(a) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{200}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}}\left(1-\frac{2 r}{2 a_{0}}\right) e^{-2 r / 2 a_{0}} 4 \pi r^{2} d r \\
& =\frac{4}{a_{0}^{3}} \int_{0}^{\infty} e^{-2 r / a_{0}}\left(r^{2}-\frac{r^{3}}{a_{0}}\right) d r=\frac{4}{a_{0}^{3}}\left[2\left(\frac{a_{0}}{2}\right)^{3}-\frac{6}{a_{0}}\left(\frac{a_{0}}{2}\right)^{4}\right]=-\frac{1}{2} .
\end{aligned}
$$

Thus, the searched probability is $1 / 4=0.25$.
(The probability to find the electron in $\psi_{100}(Z=2)$ is $512 / 729=0.702$.
Therefore, the electron is found with 95% probability in one of the states 1 s or 2s.)
(b) For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{210}(Z=2)$ the θ-integral is

$$
\int_{0}^{\pi} \cos \theta \sin \theta d \theta=\frac{1}{2} \int_{0}^{\pi} \sin 2 \theta d \theta=\left[-\frac{\cos 2 \theta}{4}\right]_{0}^{\pi}=0
$$

For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{21 \pm 1}(Z=2)$ the φ-integral is

$$
\int_{0}^{2 \pi} e^{ \pm i \varphi} d \varphi=0
$$

Thus, the probability to find the electron in a 2 p state is zero.
2. (a) Use the spherical coordinates

$$
\left\{\begin{array}{l}
x=r \sin \theta \cos \varphi \\
x=r \sin \theta \sin \varphi \\
x=r \cos \theta
\end{array}\right.
$$

to expand the wave function $\psi(x, y, z)$ as a sum of functions $R(r) Y_{l m}(\theta, \phi)$. This gives

$$
\begin{aligned}
\psi & =N r^{2} \sin \theta \cos \varphi \sin \theta \sin \varphi e^{-\alpha r}=N r^{2} \sin ^{2} \theta \sin \varphi \cos \varphi e^{-\alpha r} \\
& =\frac{1}{2} N r^{2} \sin ^{2} \theta \sin 2 \varphi e^{-\alpha r}=\frac{1}{2} N \sin ^{2} \theta \frac{1}{2 i}\left(e^{2 i \varphi}-e^{-2 i \varphi}\right) r^{2} e^{-\alpha r} \\
& =\frac{1}{2} N \frac{1}{2 i} \sqrt{\frac{32 \pi}{15}}\left(Y_{22}-Y_{2-2}\right) r^{2} e^{-\alpha r}=N^{\prime}\left(Y_{22}-Y_{2-2}\right) r^{2} e^{-\alpha r}
\end{aligned}
$$

where $Y_{l m}$ are taken from the Collection of formulas. From the expansion we see that the only possible values of l and m are $l=2$ and $m= \pm 2$.
Therefore, a measurement of L^{2} will give the value $L^{2}=2(2+1) \hbar^{2}=6 \hbar^{2}$ with probability $P\left(L^{2}=6 \hbar^{2}\right)=1$. A measurement of L_{z} will give the values $L_{z}= \pm 2 \hbar$ with probabilities $P\left(L_{z}=+2 \hbar\right)=P\left(L_{z}=-2 \hbar\right)=1 / 2$.
(b) The expectation value can be calculated as $\langle A\rangle=\sum_{i} P_{i} A_{i}$, where P_{i} is the probability to measure the value A_{i}. Therefore we have

$$
\begin{aligned}
& \left\langle L^{2}\right\rangle=1 \cdot 6 \hbar^{2}=6 \hbar^{2} \text { and } \\
& \left\langle L_{z}\right\rangle=1 / 2 \cdot 2 \hbar+1 / 2 \cdot(-2 \hbar)=0 .
\end{aligned}
$$

(c) The Schrödinger equation in spherical coordinates is given by

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r \cdot+\frac{\boldsymbol{L}^{2}}{2 m r^{2}}+V(r)\right) N^{\prime}\left(Y_{22}-Y_{2-2}\right) r^{2} e^{-\alpha r}=E N^{\prime}\left(Y_{22}-Y_{2-2}\right) r^{2} e^{-\alpha r}
$$

If we use the fact that $L^{2} \psi=6 \hbar^{2}$ and that

$$
-\frac{\hbar^{2}}{2 m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}\left(r^{3} e^{-\alpha r}\right)=-\frac{\hbar^{2}}{2 m}\left(\frac{6}{r^{2}}-\frac{6 \alpha}{r}+\alpha^{2}\right),
$$

we can write the Schrödinger equation as

$$
\left\{-\frac{\hbar^{2}}{2 m}\left(\frac{6}{r^{2}}-\frac{6 \alpha}{r}+\alpha^{2}\right)+\frac{6 \hbar^{2}}{2 m r^{2}}+V(r)-E\right\} \psi=0
$$

or

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left(\frac{6}{r^{2}}-\frac{6 \alpha}{r}+\alpha^{2}\right)+\frac{6 \hbar^{2}}{2 m r^{2}}+V(r)-E=0 \tag{1}
\end{equation*}
$$

Since the spherically symmetric potential $V(r) \rightarrow 0$ as $r \rightarrow \infty$ we have

$$
E=-\frac{\hbar^{2} \alpha^{2}}{2 m}
$$

When this result is inserted into equation (1) we get

$$
V(r)=-\frac{3 \alpha \hbar^{2}}{m r}
$$

3. A measurement of the spin component in the direction $\hat{n}=\cos \varphi \hat{x}+\sin \varphi \hat{y}$ gives the value $\hbar / 2$. The spin operator $S_{\hat{n}}$ is

$$
S_{\hat{n}}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & \cos \varphi-i \sin \varphi \\
\cos \varphi-i \sin \varphi & 0
\end{array}\right)=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & e^{-i \varphi} \\
e^{i \varphi} & 0
\end{array}\right)
$$

The eigenvalue equation is

$$
S_{\hat{n} \chi}=\lambda \chi \Leftrightarrow \frac{\hbar}{2}\left(\begin{array}{cc}
0 & e^{-i \varphi} \tag{2}\\
e^{i \varphi} & 0
\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b}
$$

We find the eigenvalues from

$$
\left|\begin{array}{cc}
-\lambda & \frac{\hbar}{2} e^{-i \varphi} \\
\frac{\hbar}{2} e^{i \varphi} & -\lambda
\end{array}\right|=0 \Rightarrow \lambda= \pm \frac{\hbar}{2}
$$

(a) The spin state corresponding to $\lambda=+\hbar / 2$ must satisfy the eigenvalue equation Eq. (2), i.e.

$$
\chi_{\hat{n}+}=\binom{a}{b}=b\binom{e^{-i \varphi}}{1} \Rightarrow \chi_{\hat{n}+}=\frac{1}{\sqrt{2}}\binom{e^{-i \varphi}}{1},
$$

where the normalization condition $|a|^{2}+|b|^{2}=1$ was used in the last step.
Other correct solutions can be found by a multiplication with an arbitrary phase factor $\exp (i \alpha)$.
(b) A general spin state can be written as $\chi=a \chi_{+}+b \chi_{-}$, where χ_{+}is spin up and χ_{-}is spin down in z-direction. For $\chi_{\hat{n}+}$ we find that the probability to measure spin up, i.e. $S_{z}=\hbar / 2$ is $|a|^{2}=\left|e^{-i \varphi} / \sqrt{2}\right|^{2}=1 / 2$, and that the probability to measure spin down, i.e. $S_{z}=-\hbar / 2$ is $|b|^{2}=|1 / \sqrt{2}|^{2}=1 / 2$.
4. (a) For a hydrogen atom we have the quantum numbers n, l, m, and s. Here we neglect the spin quantum number s. From FYSIKALIA we find that the energy is given by

$$
E_{n}=-\frac{\mu e^{4}}{8 \varepsilon_{0}^{2} h^{2}} \cdot \frac{Z^{2}}{n^{2}}=-13.6 \cdot \frac{Z^{2}}{n^{2}} \mathrm{eV}
$$

For a given n we have $l=0,1,2, \ldots, n-1$ and for a given l we have $m=-l,-l+1, \ldots, l-1, l$. Thus, for a given n there is a n-fold l-degeneracy and each state with a given l exhibits a $(2 l+1)$-fold m-degeneracy. Therefore, the energy level E_{n} is

$$
\sum_{l=0}^{n-1}(2 l+1)=n^{2} \text {-fold degenerate }
$$

(b) The first order energy correction $E_{n}^{(1)}$ for the perturbation H_{1} is

$$
E_{n}^{(1)}=\left\langle\phi_{n}\right| H_{1}\left|\phi_{n}\right\rangle,
$$

if the Hamiltonian is $H=H_{0}+H_{1}$ and ϕ_{n} are eigenstates to H_{0}. Here we have $H_{1}=\epsilon / r^{3}$ and $\phi=\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \varphi)$. Thus,

$$
E_{n}^{(1)}=\epsilon\left\langle\psi_{n l m}\right| r^{-3}\left|\psi_{n l m}\right\rangle=\frac{\epsilon}{\left.n^{3} l(l+1 / 2)(l+1)\right)}\left(\frac{Z}{a_{0}}\right)^{3} .
$$

The expectation value $\left\langle r^{-3}\right\rangle$ is taken from the Collection of formulae.
(c) The the spin-orbit interaction will cause a small amount of energy splitting between the l-degenerate states.
5. (a) For relativistic electrons the energy is given by $E=p c=\hbar c k$. The boundary conditions for a one-dimensional box of length L give $k L=n \pi$. For the three-dimensional box we have the same condition in each direction. Therefore, the energy will be given by

$$
E=\frac{\hbar c \pi}{L}\left(n_{1}+n_{2}+n_{3}\right)
$$

where n_{1}, n_{2}, and n_{3} are positive integers. If $\bar{n}=\left(n_{1}, n_{2}, n_{3}\right)$ is a vector in a three-dimensional space, then each state will occupy a volume $V_{\text {state }}=1$. The Fermi-energy is the border between filled and empty states. We can put two electrons in each state and the number of states with $\left|\left(n_{1}, n_{2}, n_{3}\right)\right| \leq R_{F}$ is

$$
\frac{N}{2}=\frac{1}{8} \frac{4 \pi}{3} R_{F}^{3} \Rightarrow R_{F}=\left(\frac{3 N}{\pi}\right)^{1 / 3}
$$

Now the Fermi-energy can be calculated as

$$
E_{F}=\frac{\hbar c \pi}{L}\left(n_{1}+n_{2}+n_{3}\right)=\frac{\hbar c \pi}{L} R_{F}=\frac{\hbar c \pi}{L}\left(\frac{3 N}{\pi}\right)^{1 / 3}=\hbar c\left(\frac{3 \pi^{2} N}{V}\right)^{1 / 3}
$$

(b) The total energy of N relativistic electrons in the box is given by

$$
\begin{aligned}
E_{\text {tot }} & =2 \frac{1}{8} \int_{|\bar{n}| \leq R_{F}} E(\bar{n}) d^{3} n=\frac{1}{4} \frac{\hbar c \pi}{L} \int_{0}^{R_{F}} n 4 \pi n^{2} d n=\frac{\hbar c \pi^{2}}{L} \int_{0}^{R_{F}} n^{3} d n \\
& =\frac{\hbar c \pi^{2}}{4 L} R_{F}^{4}=\frac{\hbar c \pi^{2}}{4 L}\left(\frac{3 N}{\pi}\right)^{4 / 3}=\frac{\hbar c \pi^{2}}{4}\left(\frac{3 N}{\pi}\right)^{4 / 3} V^{-1 / 3}=\frac{V \hbar c}{4 \pi^{2}}\left(\frac{3 \pi^{2} N}{V}\right)^{4 / 3} .
\end{aligned}
$$

(c) The degeneracy pressure is

$$
p_{d e g}=-\frac{\partial E_{t o t}}{\partial V}=-\frac{\partial}{\partial V} \frac{\hbar c \pi^{2}}{4}\left(\frac{3 N}{\pi}\right)^{4 / 3} V^{-1 / 3}=\frac{1}{3} \frac{\hbar c \pi^{2}}{4}\left(\frac{3 N}{\pi}\right)^{4 / 3} V^{-4 / 3}
$$

At the Chandrasekhar limit $p_{\text {deg }}+p_{g}=0$, so

$$
\frac{1}{3} \frac{\hbar c \pi^{2}}{4}\left(\frac{3 N}{\pi}\right)^{4 / 3} V^{-4 / 3}=0.69 \cdot \frac{1}{3}\left(\frac{4 \pi}{3}\right)^{1 / 3} G M^{2} V^{-4 / 3}
$$

Since we have one proton and one neutron per electron, the total number of electrons in the star is $N=M / 2 u$, where M is the mass of the star and $2 u$ is the mass of one proton and one neutron. Thus

$$
\begin{aligned}
& \frac{\hbar c \pi^{2}}{4}\left(\frac{3 M}{2 u \pi}\right)^{4 / 3}=0.69 \cdot\left(\frac{4 \pi}{3}\right)^{1 / 3} G M^{2} \Rightarrow \\
& M^{2 / 3}=\frac{\frac{\hbar c \pi^{2}}{4}\left(\frac{3}{2 u \pi}\right)^{4 / 3}}{0.69 \cdot\left(\frac{4 \pi}{3}\right)^{1 / 3} G} \Rightarrow \\
& M^{2 / 3}=\frac{\hbar c \pi^{2}}{4}\left(\frac{3}{2 u \pi}\right)^{4 / 3}\left(\frac{3}{4 \pi}\right)^{1 / 3} \frac{1}{0.69 \cdot G} \Rightarrow \\
& M^{2 / 3}=\frac{\hbar c}{3 \pi}\left(\frac{9 \pi}{8 u}\right)^{4 / 3} \frac{1}{0.69 \cdot G} \Rightarrow \\
& M=2.82 \cdot 10^{30} \mathrm{~kg}=1.4 M_{\odot},
\end{aligned}
$$

where $M_{\odot}=1.989 \cdot 10^{30} \mathrm{~kg}$.

