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1. Hydrogenic atoms have eigenfunctions ¥, = Rui(7)Yim(0, ¢). Using the
COLLECTION OF FORMULAE we find
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where aq is the Bohr radius. The -decay instantaneously changes 7 =1 — Z = 2.
According to the expansion theorem, it is possible to express the wave function w;(r)
before the decay as a linear combination of eigenfunctions v;(r) after the decay as

wi(r) =) a;v;(r)
J
where
a; = /v;(r)ui(r)d?’r.
The probability to find the electron in state j is given by |a;|?.

(a) Here u; = 1100(Z = 1) and v; = 1h9o(Z = 2). This gives
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Thus, the searched probability is 1/4 = 0.25.

(The probability to find the electron in 190(Z = 2) is 512/729 = 0.702.
Therefore, the electron is found with 95% probability in one of the states 1s or
2s.)

(b) For U; = ¢100(Z = ].) and V; = wglo(z = 2) the G—integral is
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For U; = ¢100(Z = ].) and V; = wglﬂ(Z = 2) the @—integral is
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Thus, the probability to find the electron in a 2p state is zero.



2.

(a)

Use the spherical coordinates

xr = rsinfcosp
r = rsinfsing
x = rcost

to expand the wave function ¢ (z,y, z) as a sum of functions R(r)Y},, (0, ¢). This
gives
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where Y, are taken from the COLLECTION OF FORMULAS. From the expansion
we see that the only possible values of [ and m are [ = 2 and m = £2.

Therefore, a measurement of L? will give the value L? = 2(2 + 1)h* = 6h* with
probability P(L? = 6A%) = 1. A measurement of L, will give the values
L, = £2h with probabilities P(L, = +2h) = P(L, = —2h) = 1/2.

The expectation value can be calculated as (A) = >, P;A;, where P; is the
probability to measure the value A;. Therefore we have

(L?) = 1-6h* = 6R* and

(L,y=1/2-2h+1/2-(—2h) = 0.

The Schrodinger equation in spherical coordinates is given by
( h* 1 0 L’
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If we use the fact that L?) = 6h* and that
10 4 /6 6o,
g ) = g (5 e?).
we can write the Schrodinger equation as
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Since the spherically symmetric potential V(r) — 0 as r — oo we have
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When this result is inserted into equation (1) we get
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3. A measurement of the spin component in the direction n = cos ¢ + sin ¢y gives the
value h/2. The spin operator S; is
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The eigenvalue equation is
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We find the eigenvalues from
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(a) The spin state corresponding to A = +h/2 must satisfy the eigenvalue equation

Eq. (2), te.
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where the normalization condition |a|? 4 |b]*> = 1 was used in the last step.
Other correct solutions can be found by a multiplication with an arbitrary phase
factor exp(ic).

(b) A general spin state can be written as y = axy + bx_, where y is spin up and
X— is spin down in z-direction. For x;. we find that the probability to measure
spin up, i.e. S, = h/2is |a|? = |[e7*/\/2|?> = 1/2, and that the probability to
measure spin down, i.e. S, = —h/2is |b]> = [1/v2]> = 1/2.

4. (a) For a hydrogen atom we have the quantum numbers n, [, m, and s. Here we
neglect the spin quantum number s. From FYSIKALIA we find that the energy
is given by

4 2 2
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E, =-— -— = —13.6 - — eV.
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For a given n we have [ = 0,1,2,...,n — 1 and for a given [ we have
m=—I,—l+1,....1 —1,1. Thus, for a given n there is a n-fold [-degeneracy and
each state with a given [ exhibits a (2] + 1)-fold m-degeneracy. Therefore, the
energy level F, is

n—1
> (20 + 1) = n’-fold degenerate.
1=0

(b) The first order energy correction E(! for the perturbation H; is
ET(LI) = (¢u|Hi|dn)

if the Hamiltonian is H = Hy + H; and ¢,, are eigenstates to Hy. Here we have
Hy =¢/r? and ¢ = Vi = Ru(r)Yim(0, ). Thus,

EWY = ¢ <wnzm!7’ 3Wn“ﬂ> - 3l +1/2)(1 + 1)) (ao) .

The expectation value (r—2) is taken from the COLLECTION OF FORMULAE.
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(¢) The the spin-orbit interaction will cause a small amount of energy splitting

between the [-degenerate states.

(a) For relativistic electrons the energy is given by E = pc = hck. The boundary

conditions for a one-dimensional box of length L give kL. = nw. For the
three-dimensional box we have the same condition in each direction. Therefore,
the energy will be given by

h
FE = %(nl -+ N9 -+ n3>,

where ny, ny, and ng are positive integers. If n = (ny,ns, ng) is a vector in a
three-dimensional space, then each state will occupy a volume Ve = 1. The
Fermi-energy is the border between filled and empty states. We can put two
electrons in each state and the number of states with |(ny,n2,n3)| < Rp is
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Now the Fermi-energy can be calculated as
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The degeneracy pressure is
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Since we have one proton and one neutron per electron, the total number of
electrons in the star is N = M /2u, where M is the mass of the star and 2u is
the mass of one proton and one neutron. Thus
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M =2.82-10% kg = 1.4M,,
where M = 1.989 - 10%° kg.



