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1. Hydrogenic atoms have eigenfunctions ψnlm = Rnl(r)Ylm(θ, ϕ). Using the
Collection of formulae we find

ψ100(r) =
(

Z3

πa3
0

)1/2
e−Zr/a0

ψ200(r) =
(

Z3

8πa3
0

)1/2 (
1− Zr

2a0

)
e−Zr/2a0

ψ210(r) =
(

Z3

32πa3
0

)1/2
Zr
a0

cos θe−Zr/2a0

ψ21±1(r) =
(

Z3

πa3
0

)1/2
Zr
8a0

sin θe±iϕe−Zr/2a0

where a0 is the Bohr radius. The β-decay instantaneously changes Z = 1 → Z = 2.
According to the expansion theorem, it is possible to express the wave function ui(r)
before the decay as a linear combination of eigenfunctions vj(r) after the decay as

ui(r) =
∑

j

ajvj(r)

where
aj =

∫
v∗j (r)ui(r)d3r.

The probability to find the electron in state j is given by |aj|2.
(a) Here ui = ψ100(Z = 1) and vj = ψ200(Z = 2). This gives

a =

(
1

πa3
0

)1/2 (
23

8πa3
0

)1/2 ∫ ∞

0
e−r/a0

(
1− 2r

2a0

)
e−2r/2a04πr2dr

=
4

a3
0

∫ ∞

0
e−2r/a0

(
r2 − r3

a0

)
dr =

4

a3
0

[
2

(
a0

2

)3

− 6

a0

(
a0

2

)4
]

= −1

2
.

Thus, the searched probability is 1/4 = 0.25.

(The probability to find the electron in ψ100(Z = 2) is 512/729 = 0.702.
Therefore, the electron is found with 95% probability in one of the states 1s or
2s.)

(b) For ui = ψ100(Z = 1) and vj = ψ210(Z = 2) the θ-integral is

∫ π

0
cos θ sin θdθ =

1

2

∫ π

0
sin 2θdθ =

[
−cos 2θ

4

]π

0

= 0.

For ui = ψ100(Z = 1) and vj = ψ21±1(Z = 2) the ϕ-integral is

∫ 2π

0
e±iϕdϕ = 0.

Thus, the probability to find the electron in a 2p state is zero.
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2. (a) Use the spherical coordinates





x = r sin θ cos ϕ
x = r sin θ sin ϕ
x = r cos θ

to expand the wave function ψ(x, y, z) as a sum of functions R(r)Ylm(θ, φ). This
gives

ψ = Nr2 sin θ cos ϕ sin θ sin ϕe−αr = Nr2 sin2 θ sin ϕ cos ϕe−αr

= 1
2
Nr2 sin2 θ sin 2ϕe−αr = 1

2
N sin2 θ 1

2i
(e2iϕ − e−2iϕ) r2e−αr

= 1
2
N 1

2i

√
32π
15

(Y22 − Y2−2) r2e−αr = N ′ (Y22 − Y2−2) r2e−αr,

where Ylm are taken from the Collection of formulas. From the expansion
we see that the only possible values of l and m are l = 2 and m = ±2.

Therefore, a measurement of L2 will give the value L2 = 2(2 + 1)h̄2 = 6h̄2 with
probability P (L2 = 6h̄2) = 1. A measurement of Lz will give the values
Lz = ±2h̄ with probabilities P (Lz = +2h̄) = P (Lz = −2h̄) = 1/2.

(b) The expectation value can be calculated as 〈A〉 =
∑

i PiAi, where Pi is the
probability to measure the value Ai. Therefore we have

〈L2〉 = 1 · 6h̄2 = 6h̄2 and

〈Lz〉 = 1/2 · 2h̄ + 1/2 · (−2h̄) = 0.

(c) The Schrödinger equation in spherical coordinates is given by

(
− h̄2

2m

1

r

∂2

∂r2
r ·+ L2

2mr2
+ V (r)

)
N ′ (Y22 − Y2−2) r2e−αr = EN ′ (Y22 − Y2−2) r2e−αr

If we use the fact that L2ψ = 6h̄2 and that

− h̄2

2m

1

r

∂2

∂r2

(
r3e−αr

)
= − h̄2

2m

(
6

r2
− 6α

r
+ α2

)
,

we can write the Schrödinger equation as

{
− h̄2

2m

(
6

r2
− 6α

r
+ α2

)
+

6h̄2

2mr2
+ V (r)− E

}
ψ = 0,

or

− h̄2

2m

(
6

r2
− 6α

r
+ α2

)
+

6h̄2

2mr2
+ V (r)− E = 0. (1)

Since the spherically symmetric potential V (r) → 0 as r →∞ we have

E = − h̄2α2

2m
.

When this result is inserted into equation (1) we get

V (r) = −3αh̄2

mr
.
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3. A measurement of the spin component in the direction n̂ = cos ϕx̂ + sin ϕŷ gives the
value h̄/2. The spin operator Sn̂ is

Sn̂ =
h̄

2

(
0 cos ϕ− i sin ϕ

cos ϕ− i sin ϕ 0

)
=

h̄

2

(
0 e−iϕ

eiϕ 0

)

The eigenvalue equation is

Sn̂χ = λχ ⇔ h̄

2

(
0 e−iϕ

eiϕ 0

) (
a
b

)
= λ

(
a
b

)
(2)

We find the eigenvalues from
∣∣∣∣∣
−λ h̄

2
e−iϕ

h̄
2
eiϕ −λ

∣∣∣∣∣ = 0 ⇒ λ = ± h̄

2

(a) The spin state corresponding to λ = +h̄/2 must satisfy the eigenvalue equation
Eq. (2), i.e.

χn̂+ =

(
a
b

)
= b

(
e−iϕ

1

)
⇒ χn̂+ =

1√
2

(
e−iϕ

1

)
,

where the normalization condition |a|2 + |b|2 = 1 was used in the last step.
Other correct solutions can be found by a multiplication with an arbitrary phase
factor exp(iα).

(b) A general spin state can be written as χ = aχ+ + bχ−, where χ+ is spin up and
χ− is spin down in z-direction. For χn̂+ we find that the probability to measure
spin up, i.e. Sz = h̄/2 is |a|2 = |e−iϕ/

√
2|2 = 1/2, and that the probability to

measure spin down, i.e. Sz = −h̄/2 is |b|2 = |1/√2|2 = 1/2.

4. (a) For a hydrogen atom we have the quantum numbers n, l, m, and s. Here we
neglect the spin quantum number s. From FYSIKALIA we find that the energy
is given by

En = − µe4

8ε2
0h

2
· Z2

n2
= −13.6 · Z2

n2
eV.

For a given n we have l = 0, 1, 2, ..., n− 1 and for a given l we have
m = −l,−l + 1, ..., l − 1, l. Thus, for a given n there is a n-fold l-degeneracy and
each state with a given l exhibits a (2l + 1)-fold m-degeneracy. Therefore, the
energy level En is

n−1∑

l=0

(2l + 1) = n2-fold degenerate.

(b) The first order energy correction E(1)
n for the perturbation H1 is

E(1)
n = 〈φn|H1|φn〉 ,

if the Hamiltonian is H = H0 + H1 and φn are eigenstates to H0. Here we have
H1 = ε/r3 and φ = ψnlm = Rnl(r)Ylm(θ, ϕ). Thus,

E(1)
n = ε

〈
ψnlm|r−3|ψnlm

〉
=

ε

n3l(l + 1/2)(l + 1))

(
Z

a0

)3

.

The expectation value 〈r−3〉 is taken from the Collection of formulae.
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(c) The the spin-orbit interaction will cause a small amount of energy splitting
between the l-degenerate states.

5. (a) For relativistic electrons the energy is given by E = pc = h̄ck. The boundary
conditions for a one-dimensional box of length L give kL = nπ. For the
three-dimensional box we have the same condition in each direction. Therefore,
the energy will be given by

E =
h̄cπ

L
(n1 + n2 + n3),

where n1, n2, and n3 are positive integers. If n̄ = (n1, n2, n3) is a vector in a
three-dimensional space, then each state will occupy a volume Vstate = 1. The
Fermi-energy is the border between filled and empty states. We can put two
electrons in each state and the number of states with |(n1, n2, n3)| ≤ RF is

N

2
=

1

8

4π

3
R3

F ⇒ RF =
(

3N

π

)1/3

Now the Fermi-energy can be calculated as

EF =
h̄cπ

L
(n1 + n2 + n3) =

h̄cπ

L
RF =

h̄cπ

L

(
3N

π

)1/3

= h̄c

(
3π2N

V

)1/3

.

(b) The total energy of N relativistic electrons in the box is given by

Etot = 2
1

8

∫

|n̄|≤RF

E(n̄)d3n =
1

4

h̄cπ

L

∫ RF

0
n4πn2dn =

h̄cπ2

L

∫ RF

0
n3dn

=
h̄cπ2

4L
R4

F =
h̄cπ2

4L

(
3N

π

)4/3

=
h̄cπ2

4

(
3N

π

)4/3

V −1/3 =
V h̄c

4π2

(
3π2N

V

)4/3

.

(c) The degeneracy pressure is

pdeg = −∂Etot

∂V
= − ∂

∂V

h̄cπ2

4

(
3N

π

)4/3

V −1/3 =
1

3

h̄cπ2

4

(
3N

π

)4/3

V −4/3

At the Chandrasekhar limit pdeg + pg = 0, so

1

3

h̄cπ2

4

(
3N

π

)4/3

V −4/3 = 0.69 · 1

3

(
4π

3

)1/3

GM2V −4/3

Since we have one proton and one neutron per electron, the total number of
electrons in the star is N = M/2u, where M is the mass of the star and 2u is
the mass of one proton and one neutron. Thus

h̄cπ2

4

(
3M

2uπ

)4/3

= 0.69 ·
(

4π

3

)1/3

GM2 ⇒

M2/3 =

h̄cπ2

4

(
3

2uπ

)4/3

0.69 ·
(

4π
3

)1/3
G
⇒

M2/3 =
h̄cπ2

4

(
3

2uπ

)4/3 (
3

4π

)1/3 1

0.69 ·G ⇒

M2/3 =
h̄c

3π

(
9π

8u

)4/3 1

0.69 ·G ⇒

M = 2.82 · 1030 kg = 1.4M¯,

where M¯ = 1.989 · 1030 kg.
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