LULEA UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics MTF067

Examination date: 2001-04-18

1. The energy eigenvalues for a particle in a box are given by

$$
E_{n}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m a^{2}}, \text { where } n=1,2,3, \ldots
$$

(a) There is no limit on the number of bosons in one state. Therefore, the ground state energy of five bosons is $5 E_{1}=\frac{5 \hbar^{2} \pi^{2}}{2 m a^{2}}$.
(b) Fermions obey the Pauli principle. Thus, the ground state energy of five fermions is given by

$$
E=2 E_{1}+2 E_{2}+E_{3}=2 \frac{\hbar^{2} \pi^{2} 1^{2}}{2 m a^{2}}+2 \frac{\hbar^{2} \pi^{2} 2^{2}}{2 m a^{2}}+1 \frac{\hbar^{2} \pi^{2} 3^{2}}{2 m a^{2}}=\frac{19 \hbar^{2} \pi^{2}}{2 m a^{2}} .
$$

2. Use a test function $f(r, \theta, \phi)$ to calculate the commutator.

$$
\begin{aligned}
{\left[L_{z}, \sin \phi\right] f(r, \theta, \phi) } & =\left[-i \hbar \frac{\partial}{\partial \phi}, \sin \phi\right] f(r, \theta, \phi) \\
& =-i \hbar \frac{\partial}{\partial \phi} \sin \phi f(r, \theta, \phi)-\sin \phi\left(-i \hbar \frac{\partial}{\partial \phi}\right) f(r, \theta, \phi) \\
& =-i \hbar \cos \phi f-i \hbar \sin \phi \frac{\partial f}{\partial \phi}+i \hbar \sin \phi \frac{\partial f}{\partial \phi} \\
& =-i \hbar \cos \phi f(r, \theta, \phi)
\end{aligned}
$$

Thus, $\left[L_{z}, \sin \phi\right]=-i \hbar \cos \phi$.
3. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}+V(x) u(x)=E u(x)
$$

with $V(x)$ zero everywhere. Thus, the eigenvalue equation reads

$$
\frac{d^{2} u(x)}{d x^{2}}+k^{2} u(x)=0
$$

where $k^{2}=2 m E / \hbar^{2}$. The eigenfunctions are given by the plane waves $e^{i k x}$ and $e^{-i k x}$, or linerar combinatoins of these, as e.g. $\sin k x$ and $\cos k x$.
(a) The wave function of the particle at $t=0$ is given by

$$
\psi(x, 0)=\cos ^{3} k x
$$

which can be written as

$$
\begin{equation*}
\psi(x, 0)=\left(\frac{e^{i k x}+e^{-i k x}}{2}\right)^{3}=\frac{1}{8}\left(e^{i 3 k x}+3 e^{i k x}+3 e^{-i k x}+e^{-i 3 k x}\right)=\frac{3}{4} \cos k x+\frac{1}{4} \cos 3 k x . \tag{1}
\end{equation*}
$$

Thus, $\psi(x, 0)$ can be written as a superposition the plane waves $\cos k_{1} x$ and $\cos k_{2} x$, with $k_{1}=k$ and $k_{2}=3 k$
(b) The energy of a plane wave $e^{i k x}$ is given by $E=\hbar^{2} k^{2} / 2 m$. Thus, the energy of $\cos k_{1} x$ is $E_{1}=\hbar^{2} k^{2} / 2 m$ and the energy of $\cos k_{2} x$ is $E_{2}=\hbar^{2} k_{2}^{2} / 2 m=9 \hbar^{2} k^{2} / 2 m$.
(c) $u(x)=e^{i k x}$ is a solution to the the time-independent Schrödinger equation. The corresponding solutions to the time-dependent Schrödinger equation is given by $u(x) T(t)$, with $T(t)=e^{-i E t / \hbar}$. Therefore, $u(x) T(t)=e^{i(k x-E t / \hbar)}$. A sum of solutions of this form is also a solution, since the Schrödinger equation is linear. This means that if $\psi(x, 0)$ is given by equation (1), then

$$
\begin{align*}
\psi(x, t) & =\frac{1}{8}\left[\left(e^{i 3 k x}+e^{-i 3 k x}\right) e^{-i E_{2} t / \hbar}+3\left(e^{i k x}+e^{-i k x}\right) e^{-i E_{1} t / \hbar}\right] \\
& =\frac{3}{4} \cos (k x) e^{-i E_{1} t / \hbar}+\frac{1}{4} \cos (3 k x) e^{-i E_{2} t / \hbar} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
E_{1}=\frac{\hbar^{2} k^{2}}{2 m} \quad \text { and } \quad E_{2}=\frac{9 \hbar^{2} k^{2}}{2 m} \tag{3}
\end{equation*}
$$

4. (a) The solution to the time-independent Schrödinger equation is

$$
\left\{\begin{array}{lll}
u(x)=e^{i k x}+R e^{-i k x} & , k=\frac{\sqrt{2 m E}}{\hbar} & , x<0 \\
u(x)=T e^{i q x} & , q=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar} & , x>0
\end{array}\right.
$$

The continuity conditions at $x=0$ give

$$
\left\{\begin{array}{l}
T=1+R \\
i q T=i k(1-R)
\end{array} \Rightarrow T=\frac{2 k}{k+q}, \text { and } R=\frac{k-q}{k+q}\right.
$$

Thus,

$$
\begin{cases}u(x)=e^{i k x}+\frac{k-q}{k+q} e^{-i k x} & , x<0 \\ u(x)=\frac{2 k}{k+q} e^{i q x} & , x>0\end{cases}
$$

(b) The transmitted part is given by the transmitted probability flux divided by the incoming probability flux, i.e.

$$
\frac{\hbar q}{m}|T|^{2} / \frac{\hbar k}{m}=\frac{q}{k}|T|^{2}=\frac{4 q k}{(k+q)^{2}}=\frac{4 q k}{(k+q)^{2}}
$$

Therefore, the number of transmitted particles per time unit is

$$
\frac{4 q k}{(k+q)^{2}} N_{0}
$$

5. A measurement of the spin component in the direction $\hat{n}=\cos \varphi \hat{x}+\sin \varphi \hat{y}$ gives the value $\hbar / 2$. The spin operator $S_{\hat{n}}$ is

$$
S_{\hat{n}}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & \cos \varphi-i \sin \varphi \\
\cos \varphi-i \sin \varphi & 0
\end{array}\right)=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & e^{-i \varphi} \\
e^{i \varphi} & 0
\end{array}\right)
$$

The eigenvalue equation is

$$
S_{\hat{n}} \chi=\lambda \chi \Leftrightarrow \frac{\hbar}{2}\left(\begin{array}{cc}
0 & e^{-i \varphi} \tag{4}\\
e^{i \varphi} & 0
\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b}
$$

We find the eigenvalues from

$$
\left|\begin{array}{cc}
-\lambda & \frac{\hbar}{2} e^{-i \varphi} \\
\frac{\hbar}{2} e^{i \varphi} & -\lambda
\end{array}\right|=0 \Rightarrow \lambda= \pm \frac{\hbar}{2}
$$

(a) The spin state corresponding to $\lambda=+\hbar / 2$ must satisfy the eigenvalue equation Eq. (4), i.e.

$$
\chi_{\hat{n}+}=\binom{a}{b}=b\binom{e^{-i \varphi}}{1} \Rightarrow \chi_{\hat{n}+}=\frac{1}{\sqrt{2}}\binom{e^{-i \varphi}}{1}
$$

where the normalization condition $|a|^{2}+|b|^{2}=1$ was used in the last step. Other correct solutions can be found by a multiplication with an arbitrary phase factor $\exp (i \alpha)$.
(b) A general spin state can be written as $\chi=a \chi_{+}+b \chi_{-}$, where χ_{+}is spin up and χ_{-}is spin down in z-direction. For $\chi_{\hat{n}+}$ we find that the probability to measure spin up, i.e. $S_{z}=\hbar / 2$ is $|a|^{2}=\left|e^{-i \varphi} / \sqrt{2}\right|^{2}=1 / 2$, and that the probability to measure spin down, i.e. $S_{z}=-\hbar / 2$ is $|b|^{2}=|1 / \sqrt{2}|^{2}=1 / 2$.
6. Hydrogenic atoms have eigenfunctions $\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \varphi)$. Using the

Collection of formulae we find

$$
\begin{aligned}
& \psi_{100}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-Z r / a_{0}} \\
& \psi_{200}(\boldsymbol{r})=\left(\frac{Z^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \\
& \psi_{210}(\boldsymbol{r})=\left(\frac{Z^{3}}{32 \pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{a_{0}} \cos \theta e^{-Z r / 2 a_{0}} \\
& \psi_{21 \pm 1}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{8 a_{0}} \sin \theta e^{ \pm i \varphi} e^{-Z r / 2 a_{0}}
\end{aligned}
$$

where a_{0} is the Bohr radius. The β-decay instantaneously changes $Z=1 \rightarrow Z=2$. According to the expansion theorem, it is possible to express the wave function $u_{i}(\boldsymbol{r})$ before the decay as a linear combination of eigenfunctions $v_{j}(\boldsymbol{r})$ after the decay as

$$
u_{i}(\boldsymbol{r})=\sum_{j} a_{j} v_{j}(\boldsymbol{r})
$$

where

$$
a_{j}=\int v_{j}^{*}(\boldsymbol{r}) u_{i}(\boldsymbol{r}) d^{3} r .
$$

The probability to find the electron in state j is given by $\left|a_{j}\right|^{2}$.
(a) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{200}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}}\left(1-\frac{2 r}{2 a_{0}}\right) e^{-2 r / 2 a_{0}} 4 \pi r^{2} d r \\
& =\frac{4}{a_{0}^{3}} \int_{0}^{\infty} e^{-2 r / a_{0}}\left(r^{2}-\frac{r^{3}}{a_{0}}\right) d r=\frac{4}{a_{0}^{3}}\left[2\left(\frac{a_{0}}{2}\right)^{3}-\frac{6}{a_{0}}\left(\frac{a_{0}}{2}\right)^{4}\right]=-\frac{1}{2}
\end{aligned}
$$

Thus, the searched probability is $1 / 4=0.25$.
(The probability to find the electron in $\psi_{100}(Z=2)$ is $512 / 729=0.702$.
Therefore, the electron is found with 95% probability in one of the states 1 s or 2 s .)
(b) For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{210}(Z=2)$ the θ-integral is

$$
\int_{0}^{\pi} \cos \theta \sin \theta d \theta=\frac{1}{2} \int_{0}^{\pi} \sin 2 \theta d \theta=\left[-\frac{\cos 2 \theta}{4}\right]_{0}^{\pi}=0
$$

For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{21 \pm 1}(Z=2)$ the φ-integral is

$$
\int_{0}^{2 \pi} e^{ \pm i \varphi} d \varphi=0
$$

Thus, the probability to find the electron in a 2 p state is zero.

