LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Course code	MTF067
Examination date	$2001-12-17$
Time	$09.00-14.00$

Solutions to Quantum Physics

1. The spherical harmonics can generally be written

$$
Y_{l m}=N_{l m} f(\theta) e^{i m \phi}
$$

where $f(\theta)$ is a function of θ only, and $N_{l m}$ is the normalization constant.
From COLLECTION OF FORMULAE

$$
L_{z}=-i \hbar \frac{\partial}{\partial \phi}
$$

so

$$
L_{z} Y_{l m}=m \hbar Y_{l m}
$$

This means that the eigenvalue of L_{z} is $m \hbar$, and the interpretation is that this is the z-component of the angular momentum of the quantum mechanical system.
2. We are to calculate

$$
\langle x\rangle=\left\langle u_{n}\right| x\left|u_{n}\right\rangle .
$$

and

$$
\left\langle x^{2}\right\rangle=\left\langle u_{n}\right| x^{2}\left|u_{n}\right\rangle .
$$

From COLLECTION OF FORMULAE

$$
x\left|u_{n}\right\rangle=\frac{b}{\sqrt{2}}\left(\sqrt{n+1}\left|u_{n+1}\right\rangle+\sqrt{n}\left|u_{n-1}\right\rangle\right)
$$

But, because of the orthogonality of the eigenfunctions

$$
\left\langle u_{m} \mid u_{n}\right\rangle=\delta_{m n},
$$

this gives

$$
\left\langle u_{n}\right| x\left|u_{n}\right\rangle=0
$$

From COLLECTION OF FORMULAE we also get

$$
x^{2}\left|u_{n}\right\rangle=\frac{b^{2}}{2}\left(\sqrt{(n+1)(n+2)}\left|u_{n+2}\right\rangle+(2 n+1)\left|u_{n}\right\rangle+\sqrt{n(n-1)}\left|u_{n-2}\right\rangle\right) .
$$

The only term that "survives" when we take the scalar product with $\left\langle u_{n}\right|$ is $(2 n+1)\left|u_{n}\right\rangle$, so

$$
\left\langle x^{2}\right\rangle=\left\langle u_{n}\right| x^{2}\left|u_{n}\right\rangle=\frac{b^{2}}{2}(2 n+1)=\frac{\hbar}{2 m \omega}(2 n+1)=\frac{\hbar}{m \omega}\left(n+\frac{1}{2}\right) .
$$

3. As the wave function is given, we can calculate the expectation values directly as the (probability) weighted sums of the different eigenvalues. Eigenfunctions: $\psi_{n l m}$, where n gives the energy, l gives the total angular momentum squared according to $l(l+1) \hbar^{2}$, and m gives the z-component of the angular momentum, $m \hbar$.
a) Expectation value for the energy

$$
\langle E\rangle=\left(\frac{4}{6}\right)^{2} E_{1}+\left(\frac{3}{6}\right)^{2} E_{2}+\left(\frac{-1}{6}\right)^{2} E_{2}+\left(\frac{\sqrt{10}}{6}\right)^{2} E_{2}=\frac{4}{9} E_{1}+\frac{5}{9} E_{2} .
$$

For the hydrogen atom, the energies are $E_{n} \approx-13.6 / n^{2} \mathrm{eV}$, so

$$
\langle E\rangle \approx-7.9 \mathrm{eV}
$$

b) Expectation value for the total angular momentum squared

$$
\left\langle\mathbf{L}^{2}\right\rangle=\frac{4}{9} \cdot 0+\frac{5}{9} \cdot 1(1+1) \hbar^{2}=\frac{10}{9} \hbar^{2} .
$$

c) Expectation value for the z-component of the angular momentum

$$
\left\langle L_{z}\right\rangle=\left(\frac{4}{9}+\frac{1}{36}\right) \cdot 0+\left(\frac{3}{6}\right)^{2} \cdot 1 \cdot \hbar+\left(\frac{\sqrt{10}}{6}\right)^{2} \cdot(-1) \cdot \hbar=-\frac{1}{36} \hbar
$$

4. a) Use Pauli matrices, see textbook.
b) Spin eigenvalues in general: $s(s+1) \hbar^{2}$ for $\mathbf{S}^{2} ; m_{s} \hbar$ for S_{z}. For spin-1/2, $s=1 / 2$, which gives $\frac{3}{4} \hbar^{2}$ for \mathbf{S}^{2}, and $\pm \hbar / 2$ for S_{z}. As the operators commute, they are simultaneously measurable.
c) The probability for \mathbf{S}^{2} being $\frac{3}{4} \hbar^{2}$ is one. The probability for S_{z} being $+\hbar / 2$ is $\left(\frac{2}{\sqrt{5}}\right)^{2}=\frac{4}{5}$. The probability for S_{z} being $-\hbar / 2$ is $\left|\frac{i}{\sqrt{5}}\right|^{2}=\frac{1}{5}$.
5. See, e.g., solution to problem 6, exam 2001-04-18.
