Course code	MTF067
Examination date	2002-08-29
Time	09.00 - 14.00

Solutions to Quantum Physics

1. Two observables, A,B, are simultaneously measurable only if their corresponding operators commute, *i.e.* if [A, B] = 0.

a) $[\mathbf{S}^2, S_x] = [\mathbf{S}^2, S_y] = [\mathbf{S}^2, S_z] = 0.$ (As $\mathbf{S}^2 = S_x^2 + S_y^2 + S_z^2$ is the unit 2×2 matrix multiplied by $\frac{3}{4}\hbar^2$.)

b) $[S_x, S_y] = i\hbar S_z, [S_x, S_z] = -i\hbar S_y, [S_y, S_z] = i\hbar S_x$. (That is, if you choose to measure for instance S_x you cannot simultaneously measure S_y, S_z .)

- 2. a) The eigenvalues of S_z are $+\hbar/2$, $-\hbar/2$.
 - b) The normalization constant $N = 1/\sqrt{10}$. The probability for $+\hbar/2$ is $P(+\hbar/2) = (3/\sqrt{10})^2 = 9/10$. The probability for $-\hbar/2$ is $P(-\hbar/2) = (1/\sqrt{10})^2 = 1/10$.
 - c) The expectation value $\langle S_z \rangle = \frac{9}{10}\hbar/2 + \frac{1}{10}(-\hbar/2) = \frac{4}{5}\hbar/2 = \frac{2}{5}\hbar.$

3. a)
$$\langle V \rangle = \frac{1}{2}k\langle x^2 \rangle = \frac{1}{2}m\omega^2 \langle x^2 \rangle$$
.
 $\langle x^2 \rangle = \langle u_n | x^2 | u_n \rangle = [\text{using Collection of formulae}] = \langle u_n | \frac{b^2}{2}(2n+1) | u_n \rangle = [\text{where } b^2 = \frac{\hbar}{m\omega}, \text{ with the last step resulting because } \langle u_n | u_m \rangle = 0 \text{ if } m \neq n] = \frac{b^2}{2}(2n+1) \langle u_n | u_n \rangle = \frac{b^2}{2}(2n+1).$
So, $\langle V \rangle = \frac{1}{2}m\omega^2\frac{\hbar}{2m\omega}(2n+1) = \frac{\hbar\omega}{2}(n+\frac{1}{2}).$
b) $\langle E \rangle = \langle K \rangle + \langle V \rangle$, which gives $\langle K \rangle = \langle E \rangle - \langle V \rangle = (n+\frac{1}{2})\hbar\omega - (n+\frac{1}{2})\hbar\omega/2 = (n+\frac{1}{2})\hbar\omega/2 = \langle V \rangle.$

- 4. As the wave function is given, we can calculate the expectation values directly as the (probability) weighted sums of the different eigenvalues. Eigenfunctions: ψ_{nlm} , where n gives the energy, l gives the total angular momentum squared according to $l(l+1)\hbar^2$, and m gives the z-component of the angular momentum, $m\hbar$.
 - a) Expectation value for the energy

$$\langle E \rangle = (\frac{4}{6})^2 E_1 + (\frac{3}{6})^2 E_2 + (\frac{-1}{6})^2 E_2 + (\frac{\sqrt{10}}{6})^2 E_2 = \frac{4}{9} E_1 + \frac{5}{9} E_2.$$

For the hydrogen atom, the energies are $E_n \approx -13.6/n^2 \ eV$, so

$$\langle E \rangle \approx -7.9 \, eV.$$

b) Expectation value for the total angular momentum squared

$$\langle \mathbf{L}^2 \rangle = \frac{4}{9} \cdot 0 + \frac{5}{9} \cdot 1(1+1)\hbar^2 = \frac{10}{9}\hbar^2.$$

c) Expectation value for the z-component of the angular momentum

$$\langle L_z \rangle = \left(\frac{4}{9} + \frac{1}{36}\right) \cdot 0 + \left(\frac{3}{6}\right)^2 \cdot 1 \cdot \hbar + \left(\frac{\sqrt{10}}{6}\right)^2 \cdot (-1) \cdot \hbar = -\frac{1}{36}\hbar.$$

5. Rewrite the wave function in terms of spherical harmonics

$$\psi(\mathbf{r}) = Cr^2 e^{-\alpha r^2} (xy + yz + zx) = Cr^2 e^{-\alpha r^2} \left[\frac{1}{4i} \sqrt{\frac{32\pi}{15}} Y_{2,2} - \frac{1}{4i} \sqrt{\frac{32\pi}{15}} Y_{2,-2} + \frac{1-i}{2} \sqrt{\frac{8\pi}{15}} Y_{2,1} + \frac{1+i}{2} \sqrt{\frac{8\pi}{15}} Y_{2,-1}\right]$$

a) None of the $Y_{l,m}$ have l = 0, so the probability for l = 0 is zero.

b) l = 2 corresponds to $\mathbf{L}^2 = 2(2+1)\hbar^2 = 6\hbar^2$. As all $Y_{l,m}$ have l = 2 the probability for this is *one*.

c) The relative probabilities (P) for different values of m are given by the ratios of the absolute squares of the corresponding coefficients. We see that P(m = 0) = 0 as the coefficient for $Y_{2,0}$ is zero. Also, P(m = 2) = P(m = -2) and P(m = 1) = P(m = -1). $P(m = 2)/P(m = 1) = (\frac{1}{16}\frac{32\pi}{15})/(\frac{1}{2}\frac{8\pi}{15}) = 1/2$.

$$1 = P(m = 2) + P(m = -2) + P(m = 1) + P(m = -1) = 6P(m = 2)$$
, so $P(m = 2) = 1/6$, $P(m = -2) = 1/6$, $P(m = 1) = 1/3$, $P(m = -1) = 1/3$, $P(m = 0) = 0$.