LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Course code	MTF067
Examination date	$2002-08-29$
Time	$09.00-14.00$

Solutions to Quantum Physics

1. Two observables, A, B, are simultaneously measurable only if their corresponding operators commute, i.e. if $[A, B]=0$.
a) $\left[\mathbf{S}^{2}, S_{x}\right]=\left[\mathbf{S}^{2}, S_{y}\right]=\left[\mathbf{S}^{2}, S_{z}\right]=0$. (As $\mathbf{S}^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2}$ is the unit 2×2 matrix multiplied by $\frac{3}{4} \hbar^{2}$.)
b) $\left[S_{x}, S_{y}\right]=i \hbar S_{z},\left[S_{x}, S_{z}\right]=-i \hbar S_{y},\left[S_{y}, S_{z}\right]=i \hbar S_{x}$. (That is, if you choose to measure for instance S_{x} you cannot simultaneously measure S_{y}, S_{z}.)
2. a) The eigenvalues of S_{z} are $+\hbar / 2,-\hbar / 2$.
b) The normalization constant $N=1 / \sqrt{10}$. The probability for $+\hbar / 2$ is $P(+\hbar / 2)=$ $(3 / \sqrt{10})^{2}=9 / 10$. The probability for $-\hbar / 2$ is $P(-\hbar / 2)=(1 / \sqrt{10})^{2}=1 / 10$.
c) The expectation value $\left\langle S_{z}\right\rangle=\frac{9}{10} \hbar / 2+\frac{1}{10}(-\hbar / 2)=\frac{4}{5} \hbar / 2=\frac{2}{5} \hbar$.
3. a) $\langle V\rangle=\frac{1}{2} k\left\langle x^{2}\right\rangle=\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle$.
$\left\langle x^{2}\right\rangle=\left\langle u_{n}\right| x^{2}\left|u_{n}\right\rangle=[$ using Collection of formulae $]=\left\langle u_{n}\right| \frac{b^{2}}{2}(2 n+1)\left|u_{n}\right\rangle=[$ where $b^{2}=\frac{\hbar}{m \omega}$, with the last step resulting because $\left\langle u_{n} \mid u_{m}\right\rangle=0$ if $\left.m \neq n\right]=\frac{b^{2}}{2}(2 n+$ 1) $\left\langle u_{n} \mid u_{n}\right\rangle=\frac{b^{2}}{2}(2 n+1)$.

So, $\langle V\rangle=\frac{1}{2} m \omega^{2} \frac{\hbar}{2 m \omega}(2 n+1)=\frac{\hbar \omega}{2}\left(n+\frac{1}{2}\right)$.
b) $\langle E\rangle=\langle K\rangle+\langle V\rangle$, which gives $\langle K\rangle=\langle E\rangle-\langle V\rangle=\left(n+\frac{1}{2}\right) \hbar \omega-\left(n+\frac{1}{2}\right) \hbar \omega / 2=$ $\left(n+\frac{1}{2}\right) \hbar \omega / 2=\langle V\rangle$.
4. As the wave function is given, we can calculate the expectation values directly as the (probability) weighted sums of the different eigenvalues. Eigenfunctions: $\psi_{n l m}$, where n gives the energy, l gives the total angular momentum squared according to $l(l+1) \hbar^{2}$, and m gives the z-component of the angular momentum, $m \hbar$.
a) Expectation value for the energy

$$
\langle E\rangle=\left(\frac{4}{6}\right)^{2} E_{1}+\left(\frac{3}{6}\right)^{2} E_{2}+\left(\frac{-1}{6}\right)^{2} E_{2}+\left(\frac{\sqrt{10}}{6}\right)^{2} E_{2}=\frac{4}{9} E_{1}+\frac{5}{9} E_{2} .
$$

For the hydrogen atom, the energies are $E_{n} \approx-13.6 / n^{2} \mathrm{eV}$, so

$$
\langle E\rangle \approx-7.9 \mathrm{eV}
$$

b) Expectation value for the total angular momentum squared

$$
\left\langle\mathbf{L}^{2}\right\rangle=\frac{4}{9} \cdot 0+\frac{5}{9} \cdot 1(1+1) \hbar^{2}=\frac{10}{9} \hbar^{2} .
$$

c) Expectation value for the z-component of the angular momentum

$$
\left\langle L_{z}\right\rangle=\left(\frac{4}{9}+\frac{1}{36}\right) \cdot 0+\left(\frac{3}{6}\right)^{2} \cdot 1 \cdot \hbar+\left(\frac{\sqrt{10}}{6}\right)^{2} \cdot(-1) \cdot \hbar=-\frac{1}{36} \hbar
$$

5. Rewrite the wave function in terms of spherical harmonics $\psi(\mathbf{r})=C r^{2} e^{-\alpha r^{2}}(x y+y z+z x)=C r^{2} e^{-\alpha r^{2}}\left[\frac{1}{4 i} \sqrt{\frac{32 \pi}{15}} Y_{2,2}-\frac{1}{4 i} \sqrt{\frac{32 \pi}{15}} Y_{2,-2}+\frac{1-i}{2} \sqrt{\frac{8 \pi}{15}} Y_{2,1}+\right.$ $\left.\frac{1+i}{2} \sqrt{\frac{8 \pi}{15}} Y_{2,-1}\right]$
a) None of the $Y_{l, m}$ have $l=0$, so the probability for $l=0$ is zero.
b) $l=2$ corresponds to $\mathbf{L}^{2}=2(2+1) \hbar^{2}=6 \hbar^{2}$. As all $Y_{l, m}$ have $l=2$ the probability for this is one.
c) The relative probabilities (P) for different values of m are given by the ratios of the absolute squares of the corresponding coefficients. We see that $P(m=0)=0$ as the coefficient for $Y_{2,0}$ is zero. Also, $P(m=2)=P(m=-2)$ and $P(m=1)=P(m=-1)$. $P(m=2) / P(m=1)=\left(\frac{1}{16} \frac{32 \pi}{15}\right) /\left(\frac{1}{2} \frac{8 \pi}{15}\right)=1 / 2$.
The probabilities must sum up to one
$1=P(m=2)+P(m=-2)+P(m=1)+P(m=-1)=6 P(m=2)$, so
$P(m=2)=1 / 6, P(m=-2)=1 / 6, P(m=1)=1 / 3, P(m=-1)=1 / 3, P(m=$ $0)=0$.
