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Solutions to Quantum Physics

1. a) The energies of a bound quantum system are quantized !

b) The Schrödinger equation is a linear differential equation, so the superposition
principle is satisfied. (For example, if ψ1 and ψ2 are two different solutions to the
Schrödinger equation, then ψ3 = ψ1 + ψ2 is also a solution. This generalizes to arbi-
trarily many different solutions.)

c) More ways for something to happen can generate destructive interference, thus giving
a lower probability.

2. As the wave function is given, we can calculate the expectation values directly as the
(probability) weighted sums of the different eigenvalues. Eigenfunctions: ψnlm, where
n gives the energy, l gives the total angular momentum squared according to l(l+1)h̄2,
and m gives the z-component of the angular momentum, mh̄.
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For the hydrogen atom, the energies are En ≈ −13.6/n2 eV , so
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(−0.8) ≈ −7.2 eV.

b) Expectation value for the total angular momentum squared
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c) Expectation value for the z-component of the angular momentum
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3. a) The probability density is

Ψ∗Ψ = [c∗1ψ
∗
1(x)eiE1t/h̄ + c∗2ψ

∗
2(x)eiE2t/h̄][c1ψ1(x)e−iE1t/h̄ + c2ψ2(x)e−iE2t/h̄] =

c∗1c1ψ∗1(x)ψ1(x) + c∗2c2ψ∗2(x)ψ2(x) + c∗2c1ψ∗2(x)ψ1(x)ei(E2−E1)t/h̄ + c∗1c2ψ∗1(x)ψ2(x)e−i(E2−E1)t/h̄ =
|c1|2|ψ1(x)|2 + |c2|2|ψ2(x)|2 + 2Re(c∗2c1ψ∗2(x)ψ1(x)ei(E2−E1)t/h̄),

where the last term shows that it oscillates in time.

b) ω = E2−E1
h̄ , so the oscillation frequency is

ν = E2−E1
2πh̄ = E2−E1

h .

The energy of an emitted photon is E = hν = E2−E1, which is the difference between
the energy of the excited state and the ground state, as it should be.

4. a) 〈V 〉 = 1
2k〈x

2〉 = 1
2mω2〈x2〉.

〈x2〉 = 〈un|x2|un〉 = [using Collection of formulae] = 〈un| b
2

2 (2n + 1)|un〉 = [where
b2 = h̄

mω , with the last step resulting because 〈un|um〉 = 0 if m 6= n] = b2
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So, 〈V 〉 = 1
2mω2 h̄

2mω (2n + 1) = h̄ω
2 (n + 1

2).

b) 〈E〉 = 〈K〉 + 〈V 〉, which gives 〈K〉 = 〈E〉 − 〈V 〉 = (n + 1
2)h̄ω − (n + 1

2)h̄ω/2 =
(n + 1

2)h̄ω/2 = 〈V 〉.

5. a) The radial probability density for the ground state (n = 1, l = 0) of Hydrogen
(Z = 1) is:

P1,0(r) = R∗
1,0R1,0(r)4πr2

As we are only interested in the position of the maximum, we can ignore multiplicative
(normalization) constants, and

P1,0(r) = e−r/a0e−r/a0r2 = e−2r/a0r2

To evaluate the maximum we set the r-derivative equal to zero

0 =
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dr
= (1− r
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)e−2r/a02r

The maximum is given by (1− r
a0

) = 0, or

r = a0.



The maximum in the radial probability density for Hydrogen in its ground state lies
at the “Bohr radius”, a0.

b) The expectation value of r for hydrogenic atoms is generally given by

〈r〉 =
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Z

In our case, n = 1, l = 0, Z = 1, so

〈r〉 =
3
2
a0

for Hydrogen in its ground state. The reason why the answer is not identical to that
in a) is because the radial probability density is asymmetrical around a0, giving more
weight to larger distances.


