LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Course code	MTF067
Examination date	$2002-10-31$
Time	$09.00-14.00$

Solutions to Quantum Physics

1. a) The energies of a bound quantum system are quantized!
b) The Schrödinger equation is a linear differential equation, so the superposition principle is satisfied. (For example, if ψ_{1} and ψ_{2} are two different solutions to the Schrödinger equation, then $\psi_{3}=\psi_{1}+\psi_{2}$ is also a solution. This generalizes to arbitrarily many different solutions.)
c) More ways for something to happen can generate destructive interference, thus giving a lower probability.
2. As the wave function is given, we can calculate the expectation values directly as the (probability) weighted sums of the different eigenvalues. Eigenfunctions: $\psi_{n l m}$, where n gives the energy, l gives the total angular momentum squared according to $l(l+1) \hbar^{2}$, and m gives the z-component of the angular momentum, $m \hbar$.
a) Expectation value for the energy

$$
\langle E\rangle=\left(\frac{4}{6}\right)^{2} E_{1}+\left(\frac{3}{6}\right)^{2} E_{2}+\left(\frac{-1}{6}\right)^{2} E_{3}+\left(\frac{\sqrt{10}}{6}\right)^{2} E_{4}=\frac{4}{9} E_{1}+\frac{1}{4} E_{2}+\frac{1}{36} E_{3}+\frac{5}{18} E_{4} .
$$

For the hydrogen atom, the energies are $E_{n} \approx-13.6 / n^{2} \mathrm{eV}$, so

$$
\langle E\rangle \approx \frac{4}{9}(-13.6)+\frac{1}{4}(-3.4)+\frac{1}{36}(-1.5)+\frac{5}{18}(-0.8) \approx-7.2 \mathrm{eV} .
$$

b) Expectation value for the total angular momentum squared

$$
\left\langle\mathbf{L}^{2}\right\rangle=\frac{4}{9} \cdot 0+\left(\frac{9}{36}+\frac{1}{36}+\frac{10}{36}\right) \cdot 1(1+1) \hbar^{2}=\frac{10}{9} \hbar^{2} .
$$

c) Expectation value for the z-component of the angular momentum

$$
\left\langle L_{z}\right\rangle=\left(\frac{16}{36}+\frac{1}{36}+\frac{10}{36}\right) \cdot 0+\frac{9}{36} \cdot 1 \cdot \hbar=\frac{1}{4} \hbar .
$$

3. a) The probability density is

$$
\begin{aligned}
& \Psi^{*} \Psi=\left[c_{1}^{*} \psi_{1}^{*}(x) e^{i E_{1} t / \hbar}+c_{2}^{*} \psi_{2}^{*}(x) e^{i E_{2} t / \hbar}\right]\left[c_{1} \psi_{1}(x) e^{-i E_{1} t / \hbar}+c_{2} \psi_{2}(x) e^{-i E_{2} t / \hbar}\right]= \\
& c_{1}^{*} c_{1} \psi_{1}^{*}(x) \psi_{1}(x)+c_{2}^{*} c_{2} \psi_{2}^{*}(x) \psi_{2}(x)+c_{2}^{*} c_{1} \psi_{2}^{*}(x) \psi_{1}(x) e^{i\left(E_{2}-E_{1}\right) t / \hbar}+c_{1}^{*} c_{2} \psi_{1}^{*}(x) \psi_{2}(x) e^{-i\left(E_{2}-E_{1}\right) t / \hbar}= \\
&\left|c_{1}\right|^{2}\left|\psi_{1}(x)\right|^{2}+\left|c_{2}\right|^{2}\left|\psi_{2}(x)\right|^{2}+2 \operatorname{Re}\left(c_{2}^{*} c_{1} \psi_{2}^{*}(x) \psi_{1}(x) e^{i\left(E_{2}-E_{1}\right) t / \hbar}\right),
\end{aligned}
$$

where the last term shows that it oscillates in time.
b) $\omega=\frac{E_{2}-E_{1}}{\hbar}$, so the oscillation frequency is
$\nu=\frac{E_{2}-E_{1}}{2 \pi \hbar}=\frac{E_{2}-E_{1}}{h}$.
The energy of an emitted photon is $E=h \nu=E_{2}-E_{1}$, which is the difference between the energy of the excited state and the ground state, as it should be.
4. a) $\langle V\rangle=\frac{1}{2} k\left\langle x^{2}\right\rangle=\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle$.
$\left\langle x^{2}\right\rangle=\left\langle u_{n}\right| x^{2}\left|u_{n}\right\rangle=[$ using Collection of formulae $]=\left\langle u_{n}\right| \frac{b^{2}}{2}(2 n+1)\left|u_{n}\right\rangle=[$ where $b^{2}=\frac{\hbar}{m \omega}$, with the last step resulting because $\left\langle u_{n} \mid u_{m}\right\rangle=0$ if $\left.m \neq n\right]=\frac{b^{2}}{2}(2 n+$ 1) $\left\langle u_{n} \mid u_{n}\right\rangle=\frac{b^{2}}{2}(2 n+1)$.

So, $\langle V\rangle=\frac{1}{2} m \omega^{2} \frac{\hbar}{2 m \omega}(2 n+1)=\frac{\hbar \omega}{2}\left(n+\frac{1}{2}\right)$.
b) $\langle E\rangle=\langle K\rangle+\langle V\rangle$, which gives $\langle K\rangle=\langle E\rangle-\langle V\rangle=\left(n+\frac{1}{2}\right) \hbar \omega-\left(n+\frac{1}{2}\right) \hbar \omega / 2=$ $\left(n+\frac{1}{2}\right) \hbar \omega / 2=\langle V\rangle$.
5. a) The radial probability density for the ground state ($n=1, l=0$) of Hydrogen $(Z=1)$ is:

$$
P_{1,0}(r)=R_{1,0}^{*} R_{1,0}(r) 4 \pi r^{2}
$$

As we are only interested in the position of the maximum, we can ignore multiplicative (normalization) constants, and

$$
P_{1,0}(r)=e^{-r / a_{0}} e^{-r / a_{0}} r^{2}=e^{-2 r / a_{0}} r^{2}
$$

To evaluate the maximum we set the r-derivative equal to zero

$$
0=\frac{d P_{1,0}(r)}{d r}=\left(1-\frac{r}{a_{0}}\right) e^{-2 r / a_{0}} 2 r
$$

The maximum is given by $\left(1-\frac{r}{a_{0}}\right)=0$, or

$$
r=a_{0}
$$

The maximum in the radial probability density for Hydrogen in its ground state lies at the "Bohr radius", a_{0}.
b) The expectation value of r for hydrogenic atoms is generally given by

$$
\langle r\rangle=\frac{1}{2}\left[3 n^{2}-l(l+1)\right] \frac{a_{0}}{Z}
$$

In our case, $n=1, l=0, Z=1$, so

$$
\langle r\rangle=\frac{3}{2} a_{0}
$$

for Hydrogen in its ground state. The reason why the answer is not identical to that in a) is because the radial probability density is asymmetrical around a_{0}, giving more weight to larger distances.

