LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Course code	MTF067
Examination date	$2002-12-20$
Time	$09.00-14.00$

Solutions to Quantum Physics

1. a) The general energy eigenvalue equation is the time-independent Schrödinger equation:

$$
H \psi=E \psi,
$$

where E are the energy eigenvalues (= the allowed energies of the system) and ψ the energy eigenstates.
b) The operator must be Hermitian (to assure that the eigenvalues are real).
c) One example is the step operator L_{+}, which gives another state than the one it acted on, making an eigenvalue equation (in simultaneous eigenstates of \mathbf{L}^{2} and L_{z}) impossible.
2. As the wave function is given, we can calculate the expectation values directly as the (probability) weighted sums of the different eigenvalues. Eigenfunctions: $\psi_{n l m}$, where n gives the energy, l gives the total angular momentum squared according to $l(l+1) \hbar^{2}$, and m gives the z-component of the angular momentum, $m \hbar$.
We begin by calculating the normalization constant, N, by the requirement

$$
\psi^{*} \psi=1,
$$

giving

$$
|N|^{2}\left(4^{2}+|3 i|^{2}+|-i|^{2}+(\sqrt{10})^{2}\right)=1,
$$

or

$$
N=\frac{1}{6}
$$

a) Expectation value for the energy

$$
\langle E\rangle=\left(\frac{4}{6}\right)^{2} E_{1}+\left(\frac{|3 i|}{6}\right)^{2} E_{2}+\left(\frac{|-i|}{6}\right)^{2} E_{3}+\left(\frac{\sqrt{10}}{6}\right)^{2} E_{4}=\frac{4}{9} E_{1}+\frac{1}{4} E_{2}+\frac{1}{36} E_{3}+\frac{5}{18} E_{4} .
$$

For the hydrogen atom, the energies are $E_{n} \approx-13.6 / n^{2} \mathrm{eV}$, so

$$
\langle E\rangle \approx \frac{4}{9}(-13.6)+\frac{1}{4}(-3.4)+\frac{1}{36}(-1.5)+\frac{5}{18}(-0.8) \approx-7.2 \mathrm{eV} .
$$

b) Expectation value for the total angular momentum squared

$$
\left\langle\mathbf{L}^{2}\right\rangle=\frac{4}{9} \cdot 0+\left(\frac{9}{36}+\frac{1}{36}+\frac{10}{36}\right) \cdot 1(1+1) \hbar^{2}=\frac{10}{9} \hbar^{2} .
$$

c) Expectation value for the z-component of the angular momentum

$$
\left\langle L_{z}\right\rangle=\left(\frac{16}{36}+\frac{1}{36}+\frac{10}{36}\right) \cdot 0+\frac{9}{36} \cdot 1 \cdot \hbar=\frac{1}{4} \hbar .
$$

3. The spin-wavefunction as given is not normalized.

$$
\chi^{*} \chi=2^{2}+|i|^{2}=5
$$

Thus, a properly normalized state is

$$
\chi=\frac{1}{\sqrt{5}}(2|\uparrow\rangle+i|\downarrow\rangle)
$$

a) Use Pauli matrices, see textbook. Spin eigenvalues in general: $s(s+1) \hbar^{2}$ for $\mathbf{S}^{2} ; m_{s} \hbar$ for S_{z}. For spin-1/2, $s=1 / 2$, which gives $\frac{3}{4} \hbar^{2}$ for \mathbf{S}^{2}, and $\pm \hbar / 2$ for S_{z}. As the operators commute, $\left[\mathbf{S}^{2}, S_{z}\right]=\left[S_{z}, \mathbf{S}^{2}\right]=0$, they are simultaneously measurable.
b) The probability for \mathbf{S}^{2} being $\frac{3}{4} \hbar^{2}$ is one. The probability for S_{z} being $+\hbar / 2$ is $\left(\frac{2}{\sqrt{5}}\right)^{2}=\frac{4}{5}$. The probability for S_{z} being $-\hbar / 2$ is $\left|\frac{i}{\sqrt{5}}\right|^{2}=\frac{1}{5}$.
4. Both x and x^{3} contain an odd number of raising and lowering operators A^{\dagger} and A. This, coupled to the fact that states with different n are orthonormal, gives

$$
\langle x\rangle=\left\langle x^{3}\right\rangle=0 .
$$

As x^{2} contains an even number of raising and lowering operators, its expectation value will not be zero

$$
\left\langle x^{2}\right\rangle=\left\langle u_{n}\right| x^{2}\left|u_{n}\right\rangle .
$$

From COLLECTION OF FORMULAE we get

$$
x^{2}\left|u_{n}\right\rangle=\frac{b^{2}}{2}\left(\sqrt{(n+1)(n+2)}\left|u_{n+2}\right\rangle+(2 n+1)\left|u_{n}\right\rangle+\sqrt{n(n-1)}\left|u_{n-2}\right\rangle\right) .
$$

The only term that "survives" when we take the scalar product with $\left\langle u_{n}\right|$ is $(2 n+1)\left|u_{n}\right\rangle$, so

$$
\left\langle x^{2}\right\rangle=\left\langle u_{n}\right| x^{2}\left|u_{n}\right\rangle=\frac{b^{2}}{2}(2 n+1)=\frac{\hbar}{2 m \omega}(2 n+1)=\frac{\hbar}{m \omega}\left(n+\frac{1}{2}\right) .
$$

5. Rewrite $L_{x}^{2}+L_{y}^{2}=\mathbf{L}^{2}-L_{z}^{2}$, which gives

$$
H=\frac{\mathbf{L}^{2}-L_{z}^{2}}{2 \hbar^{2}}+\frac{L_{z}^{2}}{3 \hbar^{2}},
$$

so

$$
H Y_{l, m}=\left(\frac{l(l+1) \hbar^{2}-m^{2} \hbar^{2}}{2 \hbar^{2}}+\frac{m^{2} \hbar^{2}}{3 \hbar^{2}}\right) Y_{l, m}
$$

giving

$$
E_{l, m}=\frac{l(l+1)}{2}-\frac{m^{2}}{6}
$$

The lowest (ground state) energy is $E_{0,0}=0$ (no rotation)!
$l=1 \Rightarrow m=0, \pm 1$, gives

$$
E_{1,0}=1 \mathrm{eV}, E_{1, \pm 1}=\frac{5}{6} \mathrm{eV}
$$

$l=2 \Rightarrow m=0, \pm 1, \pm 2$

$$
E_{2,0}=3 \mathrm{eV}, \quad E_{2, \pm 1}=\frac{17}{6} \mathrm{eV}, E_{2, \pm 2}=\frac{7}{3} \mathrm{eV}
$$

and so on.

