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1. The relevant radial part of the wave function is: R21(r) = 1√
3

(
Z

2a0

)3/2
Zr
a0
e−Zr/2a0 . The

probability to find the particle in the range r och r + dr is given by: P (r)dr = R21(r)
2r2dr and

hence P (r) = R21(r)
2r2 = konstant r4e−Zr/a0 .

The extreme is where the derivative is zero.
dP (r)

dr
= 4r3e−Zr/a0 − r4 Z

a0
e−Zr/a0 = r3(4− r Z

a0
)e−Zr/a0 = 0. The maximum appears at r = 4a0. It

is a maximum as P (0) = P (∞) = 0 and P (r) ≥ 0 and hence a maximum. You can also study
the sign change of the derivative to the left and right of the extremum or you can investigate the
sign of the second derivative at the extreme.

If there are no external electric or magnetic fields the energy of the hydrogenic levels depends
only on the principal quantum number n and not on the angular momentum quantum numbers l
and ml.

For this case the following states have the same energy:
I) 3s with ml = 0, 3p with ml = 1, 3p with ml = −1, 3p with ml = 0.
II) 4d with ml = 1, 4p with ml = 0, 4p with ml = −1.
III) 5d with ml = 1, 5p with ml = −1, 5s with ml = 0.

2. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in
one dimension is adequate). The width of the well is a.

ψn(x) =

√
2

a
sin

nπx

a
and the eigenenergys are En =

n2π2h̄2

2ma2
where n = 1, 2, 3, ...

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about
separation of variables is needed to justify the structure of the solution)

Ψn,m,l(x, y) = ψn(x) · ψm(y) · ψl(z) and eigenenergys En,m = En +Em +El where the indecies are
n = 1, 2, 3, .. , m = 1, 2, 3, .. and l = 1, 2, 3, ..

a) The eigenfunctions inside the box are (note the side length is a/2 for one of the sides)

Ψn,m,l(x, y, z) =

√
2

a
sin

nπx

a
·
√

2

a
sin

mπy

a
·
√

4

a
sin

lπ2y

a
where n = 1, 2, 3, .. ,m = 1, 2, 3, .. and l = 1, 2, 3, ..

The eigenfunctions outside the box are Ψn,m,l(x, y, z) = 0
b) The six lowest eigenenergys are

En,m,l =
π2h̄2

2ma2
(n2 +m2 + 4l2), where the 5 lowest are (n2 +m2 + 4l2) = 6, 9, 12, 14, 18, and 21.

c) The six lowest eigenenergys have degeneracys (either one, two or four) as follows:

E1,1,1 = one state (n2 +m2 + 4l2 = 6)

E1,2,1 = E2,1,1 = two states (n2 +m2 + 4l2 = 9)
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E2,2,1 = one state (n2 +m2 + 4l2 = 12)

E1,3,1 = E3,1,1 = two states (n2 +m2 + 4l2 = 14)

E2,3,1 = E3,2,1 = two states (n2 +m2 + 4l2 = 17)

E1,1,2 = one state (n2 +m2 + 4l2 = 18)

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a
symmetry operation, ie some of these states are accidentally degenerated. These four can be
grouped in the following way.

E1,2,2 = E2,1,2 = two states (n2 +m2 + 4l2 = 21)

E1,4,1 = E4,1,1 = two states (n2 +m2 + 4l2 = 21)

3. a

The spinor is not normalised and we need to do this first:

1 = χ∗χ =| A |2 (2− 5i, 3 + i)

(
2 + 5i
3− i

)
=| A |2 | 2 + 5i |2 | 3− i |2 → A =

1√
39

Note an expectation value is always a real number, never a complex one! Even if you had taken
A to be a complex number like A = i√

39
it would not change the expectation value as the

expectation value below only involves | A |2.

< Sx >=
1

39
(2− 5i, 3 + i)

h̄

2

(
0 1
1 0

) (
2 + 5i
3− i

)
=

1

39
h̄

< Sy >=
1

39
(2− 5i, 3 + i)

h̄

2

(
0 −i
i 0

) (
2 + 5i
3− i

)
= −17

39
h̄

< Sz >=
1

39
(2− 5i, 3 + i)

h̄

2

(
1 0
0 −1

) (
2 + 5i
3− i

)
=

19

78
h̄

b

Measurement along the x direction means: S = (1, 0, 0) · (Sx, Sy, Sz) = Sx. The idea is to expand
the initial spinor χ into the eigenspinors of Sx. So we start to calculate the eigenvalues and
eigenspinors to Sx. The spin operator Sx is

Sx =
h̄

2

(
0 1
1 0

)

we find the eigenvalues from the following equation

Snχ = λχ⇔ h̄

2

(
0 1
1 0

) (
a
b

)
= λ

(
a
b

)
(1)

We find the eigenvalues from the equation
∣∣∣∣∣
−λ 1 h̄

2

1 h̄
2

−λ
∣∣∣∣∣ = 0 ⇒ λ = ± h̄

2
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The eigenspinors to Sx corresponding to the + h̄
2

we get from

h̄

2

(
0 1
1 0

) (
a
b

)
= +

h̄

2

(
a
b

)

The two equations above are linearly dependent and one of them is

a = b⇔ let b = 1 and hence a = 1

This gives the unnormalised spinor
(

1
1

)
and after normalisation we have χx+ =

1√
2

(
1
1

)

The other eigenspinor χx− has to be orthogonal to χx+. An appropriate choice is:

χx− =
1√
2

(
1
−1

)

Now we can expand the initial spinor χ in these eigenspinors to Sx. the second eigenspinor you
can get from orthogonality to the first one.

χ =
1√
39

(
2 + 5i
3− i

)
= b+χx+ + b−χx−

The coefficient b+ is given by

b+ = χ∗x+χ =
1√
78

(1 1) ∗
(

2 + 5i
3− i

)
=

1√
78

(2 + 5i+ 3− i) =
1√
78

(5 + 4i)

A similar calculation gives b− :

b+ = χ∗x+χ =
1√
78

(1 − 1) ∗
(

2 + 5i
3− i

)
=

1√
78

(2 + 5i− 3 + i) =
1√
78

(−1 + 6i)

We may now check that | b+ |2 + | b− |2= 1

| b+ |2 + | b− |2= 1

78
(25 + 16 + 1 + 36) = 1 ok

The probability (to get + h̄
2
) is given by |b+|2.

|b+|2 =
1

78
(25 + 16) =

41

78
≈ 0.526

and (to get − h̄
2
) is given by |b−|2.

|b−|2 =
1

78
(1 + 36) =

37

78
≈ 0.474

You may make the following check for consistency:

< Sx >=

(
41

78
(
h̄

2
) +

37

78
(− h̄

2
)

)
=

1

39
h̄

The same result as in part a.
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4. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
x = r sin θ sinφ, z = r cos θ and hence zx = r2 cos θ sin θ(eiφ + e−iφ)/2 using the Euler relations)
the appropriate spherical harmonics can now be identified and we arrive at

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = N
r2

2

√
8π

15
(−Y2,1 + Y2,−1)e

−r/3a0 . (2)

As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is one. For the
operator Lz we note the two spherical harmonics have the same pre factor (one has -1 and the
other has +1 but the absolute value square is the same) ie they will have the same probability.
The probability to find m = 2h̄ is 0, for m = 1h̄ is 1

2
, for m = 0h̄ is 0 for m = −1h̄ is 1

2
, and for

m = −2h̄ is 0. As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is
one.

b. To calculate the expectation value < r > we need to normalise the given wave function if we
wish to do the integral. In order to achieve this in a simple way is to identify the radial wave
function. As l is equal to 2 we now that n cannot be equal to 1 or 2 it has to be larger or equal
to 3. By inspection of eq (2) and 2 we find n = 3 this function has the correct exponential and

the correct power of r (r2) and hence R3,2(r) = 2
√

2
27
√

5

(
Z

3a0

)3/2 (
Zr
a0

)2
e−Zr/3a0 . We also note that

Y2,1 and Y2,−1 are normalised but the sum (−Y2,1 + Y2,−1) is not normalised. The sum has to be
changed to (− 1√

2
Y2,1 + 1√

2
Y2,−1) in order to be normalised. Note that R3,2(r) contains an r2 term

as also a e−r/3a0 term. The wave function can now be completed to the following normalized
wave function (note that we do not need to calculate the constant N as all separate parts of
ψ(r) are normalised by them selves)

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = R3,2(r)(− 1√
2
Y2,1 +

1√
2
Y2,−1)e

−r/3a0

From physics handbook page 292 you find

〈r〉 =
1

2

[
3n2 − l(l + 1)

] (
a0

Z

)
=

1

2

[
3 32 − 2(2 + 1)

] (
a0

1

)
=

21

2
a0 =

10.5 · 0.5292 Å = 5.56 Å.

You may also do the integral directly like this:

〈r〉 =
∫ ∞

0

∫ π

0

∫ 2π

0
dφ dθ dr r2 sin(θ) r | R3,2(r) |2 |

(
− 1√

2
Y2,1 +

1√
2
Y2,−1

)
|2 e−2r/3a0 =

∫ ∞

0
dr r3 | R3,2(r) |2 e−2r/3a0 =

21

2
a0 = 10.5 · 0.5292 Å = 5.56 Å.

5. (a) 〈H〉 = 1
2
0.27 + 1

4
1.08 + 3

16
3.65 + 1

16
4.06 = 1.343125 ≈ 1.34eV.

Uncertainty is defined by: 〈∆H〉 =
√
〈H2〉 − 〈H〉2

〈H2〉 = 1
2
(0.27)2 + 1

4
(1.08)2 + 3

16
(3.65)2 + 1

16
(4.06)2 = 3.85624375 (eV)2.

〈∆H〉 =
√

3.85624375− 1.3431252 = 1.432571 ≈ 1.43eV
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(b) The expression is not unique as we only know the probabilities which are the squares of the
coefficients. In the evaluation of 〈H〉 and 〈H2〉 only the probabilities are important that’s
why a different sign ± is of no importance in this calculation.

One is: Ψ(z) = 1√
2
ψ1(z) + 1

2
ψ2(z) +

√
3

4
ψ3(z) + 1

4
ψ4(z).

Another is: Ψ(z) = 1√
2
ψ1(z)− 1

2
ψ2(z) +

√
3

4
ψ3(z)− 1

4
ψ4(z).
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