LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics F0047T

Examination date: 2010-01-15

1. (a)
i. $\hat{\Pi} C\left(\sin \left(\frac{\pi x}{L}\right)+\sin \left(\frac{3 \pi x}{L}\right)\right)=C\left(\sin \left(\frac{-\pi x}{L}\right)+\sin \left(\frac{-3 \pi x}{L}\right)\right)=-C\left(\sin \left(\frac{\pi x}{L}\right)+\sin \left(\frac{3 \pi x}{L}\right)\right)$, the eigenvalue is -1
ii. $\hat{\Pi} C e^{-a \sqrt{x^{2}+y^{2}+z^{2}}}=C C e^{-a \sqrt{(-x)^{2}+(-y)^{2}+(-z)^{2}}}=C e^{-a \sqrt{x^{2}+y^{2}+z^{2}}}$, the eigenvalue is +1
iii. $\hat{\Pi} C f(r)\left(\cos (\theta)+\cos ^{3}(\theta)\right) e^{i \phi}=C f(r)\left(\cos (\pi-\theta)+\cos ^{3}(\pi-\theta)\right) e^{i(\phi+\pi)}=$ $C f(r)\left(-\cos (\theta)+-\cos ^{3}(\theta)\right)\left(-e^{i \phi}\right)=C f(r)\left(\cos (\theta)+\cos ^{3}(\theta)\right) e^{i \phi}$, the eigenvalue is $+1$
(b)
i. $\hat{\Pi}\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)=+2 \psi_{+}(x, y, z)+-3 \psi_{-}(x, y, z) \neq$ $\lambda\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)$, not an eigenfunction.
ii. $\hat{\Pi}^{2}\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)=\hat{\Pi}\left(+2 \psi_{+}(x, y, z)+-3 \psi_{-}(x, y, z)\right)=$ $2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)$, an eigenfunction with eigenvalue +1 .
iii. $\hat{\Pi} e^{-i k x}=e^{+i k x} \neq e^{-i k x}$ not an eigenfunction and neither is $e^{i k x}$. We can however form linear combinations that have parity. The function $e^{i k x}-e^{-i k x}$ has parity $\hat{\Pi} e^{+i k x}-e^{-i k x}=e^{-i k x}-e^{+i k x}=-1\left(e^{+i k x}-e^{-i k x}\right)$ with eigenvalue -1 . The function $e^{i k x}+e^{-i k x}$ has parity $\hat{\Pi} e^{+i k x}+e^{-i k x}=e^{-i k x}+e^{+i k x}=+1\left(e^{+i k x}+e^{-i k x}\right)$ with eigenvalue +1 .
2. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}+V(x) u(x)=E u(x),
$$

with $V(x)$ zero everywhere. Thus, the eigenvalue equation reads

$$
\frac{d^{2} u(x)}{d x^{2}}+k^{2} u(x)=0
$$

where $k^{2}=2 m E / \hbar^{2}$. The eigenfunctions are given by the plane waves $e^{i k x}$ and $e^{-i k x}$, or linear combinations of these, as e.g. $\sin k x$ and $\cos k x$.
(a) The wave function of the particle at $t=0$ is given by

$$
\psi(x, 0)=\cos ^{3}(k x)+\sin ^{5}(k x) .
$$

This is not an eigenfunction in itself but it can be written as using the Euler relations

$$
\begin{array}{r}
\psi(x, 0)=\left(\frac{e^{i k x}+e^{-i k x}}{2}\right)^{3}+\psi(x, 0)=\left(\frac{e^{i k x}-e^{-i k x}}{2 i}\right)^{5}= \\
\frac{1}{8}\left(e^{i 3 k x}+3 e^{i k x}+3 e^{-i k x}+e^{-i 3 k x}\right)+ \\
\frac{1}{32 i}\left(e^{i 5 k x}-5 e^{i 3 k x}+10 e^{i k x}-10 e^{-i k x}+5 e^{-i 3 k x}-e^{-i 5 k x}\right)= \\
\frac{3}{4} \cos (k x)+\frac{1}{4} \cos (3 k x)+\frac{1}{16} \sin (5 k x)-\frac{5}{16} \sin (3 k x)+\frac{10}{16} \sin (k x) \tag{4}
\end{array}
$$

Thus, $\psi(x, 0)$ can be written as a superposition of plane waves with three different values of $k_{1}=k, k_{2}=3 k$ and $k_{3}=5 k$
(b) The energy of a plane wave $e^{i k x}$ is given by $E=\hbar^{2} k^{2} / 2 m$. Thus, the energy of $e^{i k_{1} x}$ (or $e^{-i k_{1} x}$) is $E_{1}=\hbar^{2} k^{2} / 2 m$ and the energy of $e^{i k_{2} x}$ (or $e^{-i k_{2} x}$) is $E_{2}=\hbar^{2} k_{2}^{2} / 2 m=9 \hbar^{2} k^{2} / 2 m$. and the energy of $e^{i k_{3} x}$ (or $e^{-i k_{3} x}$) is $E_{3}=\hbar^{2} k_{2}^{2} / 2 m=25 \hbar^{2} k^{2} / 2 m$.
(c) The function $u(x)=e^{i k x}$ is a solution to the the time-independent Schrödinger equation. The corresponding solutions to the time-dependent Schrödinger equation are given by $u(x) T(t)$, with $T(t)=e^{-i E t / \hbar}$. Therefore, $u(x) T(t)=e^{i(k x-E t / \hbar)}$. A sum of solutions of this form is also a solution, since the Schrödinger equation is linear. This means that if $\psi(x, 0)$ is given by equation (4), then the time dependent solution is given by

$$
\begin{array}{r}
\psi(x, t)=\frac{1}{8}\left(e^{i 3 k x}+e^{-i 3 k x}\right) e^{-i E_{2} t / \hbar}+\frac{3}{8}\left(e^{i k x}+e^{-i k x}\right) e^{-i E_{1} t / \hbar}+ \\
\frac{1}{32 i}\left(e^{i 5 k x}-e^{-i 5 k x}\right) e^{-i E_{3} t / \hbar}-\frac{5}{32 i}\left(e^{i 3 k x}-e^{-i 3 k x}\right) e^{-i E_{2} t / \hbar}+\frac{10}{32 i}\left(e^{i k x}-e^{-i k x}\right) e^{-i E_{1} t / \hbar}= \tag{6}
\end{array}
$$

where

$$
\begin{equation*}
E_{1}=\frac{\hbar^{2} k^{2}}{2 m} \quad \text { and } \quad E_{2}=\frac{9 \hbar^{2} k^{2}}{2 m} \quad \text { and } \quad E_{3}=\frac{25 \hbar^{2} k^{2}}{2 m} \tag{7}
\end{equation*}
$$

3. (a) The parity of a hydrogen eigenfunction $\psi_{n l m_{l}}(\mathbf{r})$ is given by $(-1)^{l}$. The given wave function $\Psi(\mathbf{r})$ is a mixture of eigenfunctions of different parity. Hence $\Psi(\mathbf{r})$ cannot have a definite parity.
(b) The probability is given by the absolute square of the coefficients. The probabilities are (in order) $\frac{4}{15}, \frac{9}{15}, \frac{1}{15}, \frac{1}{15}$. as a check they sum up to 1 as they should do.
(c) The energy of a single state is given by: $E_{n}=-\frac{13.56}{n^{2}} \mathrm{eV}$. The expectation value is given by $<E>=\frac{4}{15}\left(-\frac{13.56}{1^{2}}\right)+\frac{9}{15}\left(-\frac{13.56}{2^{2}}\right)+\frac{1}{15}\left(-\frac{13.56}{3^{2}}\right)+\frac{1}{15}\left(-\frac{13.56}{3^{2}}\right)=-13.56\left(\frac{4}{15}+\frac{9}{60}+\frac{1}{135}+\frac{1}{135}\right)=$ $-5.851 \mathrm{eV}$
The operator \mathbf{L}^{2} has eigenvalues $\hbar^{2} l(l+1)$. The expectation value is given by
$<\mathbf{L}^{2}>=\frac{4}{15} \cdot 0+\frac{9}{15} \cdot 0+\frac{1}{15}\left(\hbar^{2} 1(1+1)\right)+\frac{1}{15}\left(\hbar^{2} 2(2+1)\right)=\frac{8}{15} \hbar^{2}$
The operator L_{z} has eigenvalues $\hbar m_{l}$. The expectation value is given by
$<L_{z}>=\frac{4}{15} \cdot 0+\frac{9}{15} \cdot 0+\frac{1}{15} \cdot 0+\frac{1}{15}(\hbar 2)=\frac{2}{15} \hbar$
4. The eigenfunctions of the infinite square well are (Physics handbook)

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \text { and the eigenenergies are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \quad \text { where } \quad n=1,2,3, \ldots
$$

The correction to the eigenenergies due to perturbation is given by:
$E_{n}^{1}=<H_{1}>$ where H_{1} is the deviation in the potential from the infinite square well.

$$
E_{n}^{1}=\int_{0}^{a / 2} \frac{2 \epsilon}{a} \sin ^{2} \frac{n \pi x}{a} d x=\int_{0}^{a / 2} \frac{2 \epsilon}{a 2}\left(1-\cos \frac{2 n \pi x}{a}\right) d x=\frac{\epsilon}{a}\left[x-\frac{a}{2 n \pi} \sin \frac{2 n \pi x}{a}\right]_{0}^{a / 2}=\frac{\epsilon}{2}
$$

This is the same for all n. The corrections for $\mathrm{n}=1$ and $\mathrm{n}=2$ are of intrest (answer to a)).

$$
E_{1}^{1}=E_{2}^{1}=\frac{\epsilon}{2}=0.055 \mathrm{eV}
$$

The two lowest eigenergies are

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}=\frac{n^{2} h^{2}}{8 m a^{2}}[n=1] \quad E_{1}=6.02465 \cdot 10^{-20} \mathrm{~J}=0.376028 \mathrm{eV} \quad \text { and } \quad E_{2}=1.504114 \mathrm{eV}
$$

The new energys for the two lowest levels are:

$$
E_{1}^{*}=0.376028+0.055=0.431028 \mathrm{eV} \text { and } E_{2}^{*}=1.504114+0.055=1.559114 \mathrm{eV}
$$

The case of $\epsilon=1.08 \mathrm{eV}$. This energy is much higher than the groundstate energy of the unperturbed model. You cannot use perturbation here. The model is more like a square well of width $a / 2$. The answer of such a perturbation calculation would not give a trustworthy result.
5. The rotational energy of a molecule is given by

$$
E_{l}=\frac{\hbar^{2}}{2 I} l(l+1)
$$

The emitted photon energy for a transition $l+1$ to l is given by

$$
E_{\text {photon }}=\frac{\hbar^{2}}{2 I}((l+1)(l+2)-l(l+1))=\frac{\hbar^{2}}{2 I}\left(l^{2}+3 l-2-l^{2}-l\right)=\frac{\hbar^{2}(l+1)}{I}
$$

This is the energy for one line and there will be a set of lines all for different l. The separation between two adjecent lines in energy will be

$$
E_{\text {photon }, l+2}-E_{\text {photon }, l+1}=\frac{\hbar^{2}(l+2)}{I}-\frac{\hbar^{2}(l+1)}{I}=\frac{\hbar^{2}}{I}
$$

The energy of a photon is $E_{\text {photon }}=\frac{h c}{\lambda}$ and hence

$$
\begin{gathered}
\frac{\hbar^{2}}{I}=h c\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)=1.2398 \cdot 10^{-6}\left(\Delta \frac{1}{\lambda}\right) \mathrm{eV} \mathrm{~m}=1.2398 \cdot 10^{-6} \cdot 20.68 \mathrm{~cm}^{-1}=2.564 \cdot 10^{-3} \mathrm{eV} \\
I=\frac{\left(1.055 \cdot 10^{-34}\right)^{2}}{2.564 \cdot 10^{-3} \cdot 1.602 \cdot 10^{-19}}=2.71 \cdot 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}
\end{gathered}
$$

The moment of inertia is $I=m r^{2}$ where $m=m_{H} m_{C l} /\left(m_{H}+m_{C l}\right)=35 / 36 m_{H}$ and r is the average separation. $r=\sqrt{\frac{I}{m}}=\sqrt{\frac{36 \cdot 2.71 \cdot 10^{-47}}{35 \cdot 1.673 \cdot 10^{-27}}}=1.29 \cdot 10^{-10} \mathrm{~m}$
$E_{l}=\frac{2.56 \cdot 10^{-3}}{2} l(l+1) \mathrm{eV}$
$E_{0}=0 \mathrm{eV}$,
$E_{1}=2.56 \cdot 10^{-3} \mathrm{eV}=4.10 \cdot 10^{-22} \mathrm{~J}$,
$E_{2}=7.68 \cdot 10^{-3} \mathrm{eV}=1.23 \cdot 10^{-21} \mathrm{~J}$,
$E_{3}=15.4 \cdot 10^{-3} \mathrm{eV}=2.47 \cdot 10^{-21} \mathrm{~J}$,
$E_{3}=25.6 \cdot 10^{-3} \mathrm{eV}=4.10 \cdot 10^{-21} \mathrm{~J}$.

