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1. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− h̄2

2m

d2

dx2
Ψ(x, y) − h̄2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− h̄2

2m

d2

dx2
ψx(x) −

h̄2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− h̄2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

h̄2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(

Ψ(−a
2
) = Ψ(a

2
) = 0

)

into
account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A = 0 and we get the following solution: The normalising constant B =
√

2

a
you get from the

condition
∫ a/2

−a/2
| Ψ |2 dx = 1. The condition sin(ka

2
) = 0 gives ka

2
= π

2
∗ (even− integer). The

solution is:

ψn(x) =

√

2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 2, 4, 6, ... (1)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√

2

a
cos(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 3, 5, ... (2)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (3)
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In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√

2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (4)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√

2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (5)

ψn(x) =
√

2

a
sin(nπx

a
+ nπ

2
) =

√

2

a

(

sin(nπx
a

) · cos(nπ
2

) + cos(nπx
a

) · sin(nπ
2

)
)

. We see that we recover

the solution in eq (1), (2) and (3) as we let n run from 1 to ∞.

b) Now we turn to the question of parity, ie whether the wave function is odd or even under a
change of coordinates from (x, y) to (−x,−y). The one dimensional eigenfunctions in eq (1) and
(2) have a definite parity. The functions in (1) are odd whereas the functions in (2) are even. As
the eigenstates for the 2 dimensional system are formed from eq (3) ie products of functions that
are even or odd the total function itself will be either even or odd as well.

The four lowest eigenenergies are given by

En,m =
π2h̄2

2Ma2
(n2 +m2), where the 4 lowest are (n2 +m2) = 2, 5, 8, 10.

When we form the eigenstates we need to keep track of the parity of the ψn(x) and ψm(y). It is
therefore necessary to have the functions in the form like in eq (1) and (2) to identify the parity
as odd or even. This is difficult if you try with functions like eq (5) even though it is a correct
eigenstate it is hard to identify their parity.

E1,1 = one state (n2 +m2 = 2) even * even = even

E1,2 = E2,1 = two states (n2 +m2 = 5) even * odd = odd

E2,2 = one state (n2 +m2 = 8) odd * odd = even

E1,3 = E3,1 = two states (n2 +m2 = 10) even * even = even

So of the four states only one is odd and three where even.

2. A measurement of the spin component in the direction n̂ = cosϕx̂+ sinϕŷ gives the value h̄/2.
The spin operator Sn̂ is

Sn̂ =
h̄

2

(

0 cosϕ− i sinϕ
cosϕ− i sinϕ 0

)

=
h̄

2

(

0 e−iϕ

eiϕ 0

)

The eigenvalue equation is

Sn̂χ = λχ⇔ h̄

2

(

0 e−iϕ

eiϕ 0

)(

a
b

)

= λ

(

a
b

)

(6)
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We find the eigenvalues from
∣

∣

∣

∣

∣

−λ h̄
2
e−iϕ

h̄
2
eiϕ −λ

∣

∣

∣

∣

∣

= 0 ⇒ λ = ± h̄
2

(a) The spin state corresponding to λ = +h̄/2 must satisfy the eigenvalue equation Eq. (6), i.e.

χn̂+ =

(

a
b

)

= b

(

e−iϕ

1

)

⇒ χn̂+ =
1√
2

(

e−iϕ

1

)

,

where the normalization condition |a|2 + |b|2 = 1 was used in the last step. Other correct
solutions can be found by a multiplication with an arbitrary phase factor exp(iα).

(b) A general spin state can be written as χ = aχ+ + bχ−, where χ+ is spin up and χ− is spin
down in z-direction. For χn̂+ we find that the probability to measure spin up, i.e. Sz = h̄/2
is |a|2 = |e−iϕ/

√
2|2 = 1/2, and that the probability to measure spin down, i.e. Sz = −h̄/2

is |b|2 = |1/
√

2|2 = 1/2.

3. (a) 〈H〉 = 1

2
0.31 + 2

12
0.97 + 1

12
1.81 + 3

16
3.35 + 1

16
4.08 = 1.350625 ≈ 1.35eV.

Uncertainty is defined by: 〈∆H〉 =
√

〈H2〉 − 〈H〉2
〈H2〉 = 1

2
(0.31)2 + 2

12
(0.97)2 + 1

12
(1.81)2 + 3

16
(3.35)2 + 1

16
(4.08)2 = 3.622494 ≈ 3.62eV.

〈∆H〉 =
√

3.622494 − 1.3506252 = 1.341009 ≈ 1.34eV

(b) The expression is not unique as we only know the probabilities which are the squares of the
coefficients. In the evaluation of 〈H〉 and 〈H2〉 only the probabilities are important thats
why a different sign ± is of no importance in this calculation.

One is: Ψ(z) = 1√
2
ψ1(z) +

√

2

12
ψ2(z) + 1√

12
ψ3(z) +

√
3

4
ψ4(z) + 1

4
ψ5(z).

Another is: Ψ(z) = 1√
2
ψ1(z) −

√

2

12
ψ2(z) + 1√

12
ψ3(z) +

√
3

4
ψ4(z) + 1

4
ψ5(z).

(c) By a factor of 4. (All eigenvalues change by a factor of 4)

4. The task is to show that ψ = Aeax2+bx is the ground state. Rewrite the Schrödinger equation to

∂2

∂x2
ψ =

2m

h̄2
(V (x) − E)ψ =

[

mk

h̄2
x2 − 2mk

h̄2
x0x+

mk

h̄2
x2

0 −
2mE

h̄2

]

Aeax2+bx (7)

(8)

And form the derivatives of the function ψ:

∂

∂x
ψ = (2ax+ b)Aeax2+bx; (9)

∂2

∂x2
ψ = (4a2x2 + 4abx+ b2 + 2a)Aeax2+bx (10)

(11)

This yields 4a2 = mk
h̄2 ; a = −

√
mk
2h̄

, a must be less then 0 otherwise the wave function cannot be
normalized.

Further −2mk
h̄2 x0 = 4ab which gives b =

√
mk
h̄
x0. Further mk

h̄2 x2
0 − 2mE

h̄2 = b2 + 2a = mk
h̄2 x2

0 −
√

mk
h̄

and

this gives the energy E = h̄
2

√

k
m

, ie the energy of the ground state. The constants are a = −
√

mk
2h̄

and b =
√

mk
h̄
x0.
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5. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
x = r sin θ sinφ, z = r cos θ and hence zx = r2 cos θ sin θ(eiφ + e−iφ)/2 using the Euler relations)
the appropriate spherical harmonics can now be identified and we arrive at

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = N
r2

2

√

8π

15
(−Y2,1 + Y2,−1)e

−r/3a0 . (12)

As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is one. For the
operator Lz we note the two spherical harmonics have the same pre factor (one has -1 and the
other has +1 but the absolute value square is the same) ie they will have the same probability.
The probability to find m = 2h̄ is 0, for m = 1h̄ is 1

2
, for m = 0h̄ is 0 for m = −1h̄ is 1

2
, and for

m = −2h̄ is 0. As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is
one.

b. To calculate the expectation value < r > we need to normalise the given wave function if we
wish to do the integral. In order to achieve this in a simple way is to identify the radial wave
function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or
equal to 3. By inspection of eq (12) and 2 we find n = 3 this function has the correct

exponential and the correct power of r (r2) and hence R3,2(r) = 2
√

2

27
√

5

(

Z
3a0

)3/2 (
Zr
a0

)2

e−Zr/3a0 . We

also note that Y2,1 and Y2,−1 are normalised but the sum (−Y2,1 + Y2,−1) is not normalised. The
sum has to be changed to (− 1√

2
Y2,1 + 1√

2
Y2,−1) in order to be normalised. Note that R3,2(r)

contains an r2 term as also a e−r/3a0 term. The wave function can now be completed to the
following normailzed wave function (note that we do not need to calculate the constant N as all
separate parts of ψ(r) are normalised by them selves)

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = R3,2(r)(−
1√
2
Y2,1 +

1√
2
Y2,−1)e

−r/3a0

From physics handbook page 292 you find

〈r〉 =
1

2

[

3n2 − l(l + 1)
]

(

a0

Z

)

=
1

2

[

3 32 − 2(2 + 1)
]

(

a0

1

)

=
21

2
a0 =

10.5 · 0.5292 Å = 5.56 Å.

You may also do the integral directly like this:

〈r〉 =
∫ ∞

0

∫ π

0

∫

2π

0

dφ dθ dr r2 sin(θ) r | R3,2(r) |2 |
(

− 1√
2
Y2,1 +

1√
2
Y2,−1

)

|2 e−2r/3a0 =

∫ ∞

0

dr r3 | R3,2(r) |2 e−2r/3a0 =
21

2
a0 = 10.5 · 0.5292 Å = 5.56 Å.
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