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1. The eigenfunctions of the infinite square well are (Physics handbook)

ψn(x) =

√
2

a
sin

nπx

a
and the eigenenergies are En =

n2π2h̄2

2ma2
where n = 1, 2, 3, ...

The correction to the eigenenergies due to perturbation is given by:

E1
n =< H1 > where H1 is the deviation in the potential from the infinite square well.

E1
n =

∫ a/2

0

2ε

a
sin2 nπx

a
dx =

∫ a/2

0

2ε

a2

(
1− cos

2nπx

a

)
dx =

ε

a

[
x− a

2nπ
sin

2nπx

a

]a/2
0

=
ε

2

This is the same for all n. The corrections for n=1 and n=2 are of intrest (answer to a)).

E1
1 = E1

2 =
ε

2
= 0.315eV.

The two lowest eigenergies are

En =
n2π2h̄2

2ma2
=

n2h2

8ma2
[n = 1] E1 = 3.76540625 · 10−19J = 2.350175eV and E2 = 9.4007125eV

To calculate the transition energy between two perturbed levels we first calculate the new
energys, due to the perturbation, for the two lowest levels:

E∗1 = 2.350175 + 0.315 = 2.665175eV and E∗2 = 9.4007125 + 0.315 = 9.71571251.559114eV

The transition energy between the perturbed levels will be 9.7157125 - 2.665175 = 7.0505375
eV. The same would be for the unperturbed levels as the perturbation changes all levels by the
same energy (to first order).

2. Same as problem 4.4 in Bransden & Joachain. In the region where the potential is zero (x < 0)
the solutions are of the traveling wave form eikx and e−ikx, where k2 = 2mE/h̄2. A plane wave
ψ(x) = Aei(kx−ωt) describes a particle moving from x = −∞ towards x =∞. The probability
current associated with this plane wave is
j = h̄

2mi
| A |2 (e−ikx ∂

∂x
e+ikx − e+ikx ∂

∂x
e−ikx) =| A |2 h̄

m
k =| A |2 v

A plane wave ψ(x) = Bei(−kx−ωt) describes a particle moving the opposite direction from x =∞
towards x = −∞. The probability current associated with this plane wave is
j = h̄

2mi
| B |2 (e+ikx ∂

∂x
e−ikx − e−ikx ∂

∂x
e+ikx) = − | B |2 h̄

m
k = − | B |2 v

(a) Solution for the region x > 0 where the potential is V0 = 5.0eV. The potential step is larger
than the kinetic energy 2.5 eV of the incident beam. The particle may therefore not enter
this region classically. It will be totally reflected. In quantum mechanics we perform the
following calculation: The two solutions for the two regions are:

Ψ(x) =

{
Aeikx +Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceκx +De−κx for x > 0 where κ2 = 2m(V0 − E)/h̄2
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we can put C = 0 as this part of the solution would diverge, and is hence not physical, as x
approaches ∞. At x = 0 both the wavefunction and its derivative have to be continous
functions. The derivative is:

∂Ψ(x)

∂x
=

{
Aikeikx −Bike−ikx

−Dκe−κx

At x = 0 we arrive at the following two equations:

{
A+B = D

iAk − iBk = −Dκ solving for


D
A

= 2k
k+κ

B
A

= k−iκ
k+iκ

solving for


D
A

= 2

1+i
√
V0/E−1

B
A

=
1−i
√
V0/E−1

1+i
√
V0/E−1

We can now calculate the coefficient of reflection, R The coeficients represent the following
amplitudes: A is the incident beam, B is the reflected beam and C is the transmitted
beam. The associated probability currents are denoted jA, jB and jC . Conservation yields
jA = jB + jC . Hence we can define the coeficient of reflection as the fraction of reflected
flux R = |jB |

|jA|
and the coeficient of transmission as T = |jC |

|jA|{
R = |jB |

|jA|
= B2k

A2k
= 1

This is easily seen from the ratio B/A being the ratio of two complex number where one is
the complex conjugate of the other and therefore having the same absolute value.
Imidiately follows that T = 0 as the currents have to be conserved.

(b) This case can be seen as either the limiting case of a) or c). Both give the same answer
R = 1 and T = 0.

(c) Solution for the region x > 0 where the potential is V0 = 5.0eV. The potential step is
smaller than the kinetic energy 7.5eV of the incident beam. The particle may therefore
enter this region classically. It will however lose some of its kinetic energy. In quantum
mechanics there is a probabillity for the wave to be reflected as well. The two solutions for
the two regions are:

Ψ(x) =

{
Aeikx +Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceik
′x +De−ik

′x for x > 0 where k′2 = 2m(E − V0)/h̄2

whe can put D = 0 as there cannot be an incident beam from x =∞. At x = 0 both the
wavefunction and its derivative have to be continous functions. The derivative is:

∂Ψ(x)

∂x
=

{
Aikeikx −Bike−ikx

Cik′eik
′x

At x = 0 we arrive at the following two equations:

{
A+B = C

Ak −Bk = Ck′
solving for


C
A

= 2k
k+k′

B
A

= k−k′
k+k′

solving for


C
A

= 2
√
E√

E+
√
E−V0

B
A

=
√
E−
√
E−V0√

E+
√
E−V0

The coeficients represent the following amplitudes: A is the incident beam, B is the
reflected beam and C is the transmitted beam. The associated probability currents are
denoted jA, jB and jC . Conservation yields jA = jB + jC . Hence we can define the
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coeficient of reflection as the fraction of reflected flux R = |jB |
|jA|

and the coeficient of

transmission as T = |jC |
|jA| R = |jB |

|jA|
= B2k

A2k
=
(
B
A

)2
=
(√

E−
√
E−V0√

E+
√
E−V0

)2
=
(√

7.5−
√

2.5√
7.5+

√
2.5

)2
= 0.071797

T = |jC |
|jA|

= C2k′

A2k
=
(
C
A

)2 √E−V0√
E

=
(

2
√
E√

E+
√
E−V0

)2 √
E−V0√
E

=
(

2
√

7.5√
7.5+

√
2.5

)2 √
2.5√
7.5

= 0.928203

The last result could also be reached by T +R = 1.

3. Hydrogenic atoms have eigenfunctions ψnlm = Rnl(r)Ylm(θ, ϕ). Using the Collection of
formulae we find

ψ100(r) =
(
Z3

πa3
0

)1/2
e−Zr/a0

ψ200(r) =
(
Z3

8πa3
0

)1/2 (
1− Zr

2a0

)
e−Zr/2a0

ψ210(r) =
(

Z3

32πa3
0

)1/2
Zr
a0

cos θe−Zr/2a0

ψ21±1(r) =
(
Z3

πa3
0

)1/2
Zr
8a0

sin θe±iϕe−Zr/2a0

where a0 is the Bohr radius. The β-decay instantaneously changes Z = 1→ Z = 2. According
to the expansion theorem, it is possible to express the wave function ui(r) before the decay as a
linear combination of eigenfunctions vj(r) after the decay as

ui(r) =
∑
j

ajvj(r)

where
aj =

∫
v∗j (r)ui(r)d3r.

The probability to find the electron in state j is given by |aj|2.

(a) Here ui = ψ100(Z = 1) and vj = ψ200(Z = 2). This gives

a =

(
1

πa3
0

)1/2 (
23

8πa3
0

)1/2 ∫ ∞
0

e−r/a0

(
1− 2r

2a0

)
e−2r/2a04πr2dr

=
4

a3
0

∫ ∞
0

e−2r/a0

(
r2 − r3

a0

)
dr =

4

a3
0

[
2
(
a0

2

)3

− 6

a0

(
a0

2

)4
]

= −1

2
.

Thus, the probability is 1/4 = 0.25.

(b) For ui = ψ100(Z = 1) and vj = ψ210(Z = 2) the θ-integral is

∫ π

0
cos θ sin θdθ =

1

2

∫ π

0
sin 2θdθ =

[
−cos 2θ

4

]π
0

= 0.

For ui = ψ100(Z = 1) and vj = ψ21±1(Z = 2) the ϕ-integral is∫ 2π

0
e±iϕdϕ = 0.

Thus, the probability to find the electron in a 2p state is zero.
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(c) Here ui = ψ100(Z = 1) and vj = ψ100(Z = 2). This gives

a =

(
1

πa3
0

)1/2 (
23

πa3
0

)1/2 ∫ ∞
0

e−r/a0e−2r/a04πr2dr =
8
√

2

a3
0

∫ ∞
0

e−3r/a0r2dr

=
8
√

2

a3
0

a3
0

33

∫ ∞
0

e−xx2dx =
8
√

2

27

∫ ∞
0

e−xx2dx =
8
√

2

27

∫ ∞
0

2e−xdx =
16
√

2

27

Thus, the probability is 512/729 ≈ 0.70233.

(The probability to find the electron in ψ100(Z = 2) is 512/729 = 0.702. Therefore, the
electron is found with 95% probability in one of the states 1s or 2s.)

(d) No l has to be less than n.

4. (a) To show that ψ+(ξ) = Aξe+ξ2/2 solves the differential equation put it in! The first
derivative and second derivatives are (A cancels out):

dψ+(ξ)

dξ
= e+ξ2/2+ξ2e+ξ2/2 and

d2ψ+(ξ)

dξ2
= ξe+ξ2/2+2ξe+ξ2/2+ξ3e+ξ2/2 = 3ξe+ξ2/2+ξ3e+ξ2/2

Now evaluate the following:

d2ψ+(ξ)

dξ2
+ (λ+ − ξ2)ψ+(ξ) = (λ+ + 3)ξe+ξ2/2 + ξ3e+ξ2/2 − ξ3e+ξ2/2 = (λ+ + 3)ξe+ξ2/2 = 0

If λ+ = −3 the desired result is reached.

The same yields for ψ−(ξ) = Bξe−ξ
2/2. The first derivative and second derivatives are (B

cancels out):

dψ−(ξ)

dξ
= e−ξ

2/2−ξ2e−ξ
2/2 and

d2ψ−(ξ)

dξ2
= −ξe−ξ2/2−2ξe−ξ

2/2+ξ3e−ξ
2/2 = −3ξe−ξ

2/2+ξ3e−ξ
2/2

Now evaluate the following:

d2ψ−(ξ)

dξ2
+ (λ− − ξ2)ψ−(ξ) = (λ− − 3)ξe−ξ

2/2 + ξ3e−ξ
2/2 − ξ3e−ξ

2/2 = (λ− − 3)ξe−ξ
2/2 = 0

If λ− = +3 the desired result is reached.

(b) Only one is physical acceptable ψ−(ξ) as it can be normalised. The othe function ψ+(ξ) is
not acceptable as it cannot be normalized and therefore it does not describe a particle.

5. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in

terms of eigenfunctions. The eigenfunctions are (PH) ψ(x) =
√

2
a

sin(nπx
a

). We can directly
conclude that the given wave function consists of n = 1 and n = 5 functions, we can write:

ψ(x, 0) =
A
√

2√
2a

sin
(
πx

a

)
+

√
2√

2 · 5a
sin

(
5πx

a

)
=

A√
2
ψ1(x, 0) +

1√
10
ψ5(x, 0)

As both eigenfunctions are orthonormal the normalisation integral reduces to A2

2
+ 1

10
= 1

and hence A =
√

18
10

=
√

9
5

= 3√
5
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(b) The wave function contains only n = 1 and n = 5 eigenfunctions and therefore the only

possible outcome of an energy meassurement are E1 = h̄2π2

2ma2 with probability A2

2
= 0.9 and

E5 = h̄2π2

2ma2 25 with probability 1 - 0.9 = 0.1 . The average energy is given by

< E >= 0.9E1 + 0.1E5 = h̄2π2

2ma2 (0.9 + 0.1 · 25) = 3.4 · h̄2π2

2ma2 = 1.7 · h̄2π2

ma2

(c) The time dependent solution is given by Ψ(x, t) =
∑∞
n=1 cnψn(x)e−iEnt/h̄ and hence

Ψ(x, t) =

√
9

10
ψ1(x, 0)e−i

h̄π2t
2ma2 +

1√
10
ψ5(x, 0)e−i

25h̄π2t
2ma2
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