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1. The eigenfunctions of the infinite square well are (Physics handbook)

ψn(x) =

√

2

a
sin

nπx

a
and the eigenenergies are En =

n2π2h̄2

2ma2
where n = 1, 2, 3, ...

The correction to the eigenenergies due to perturbation is given by:

E1
n =< H1 > where H1 is the deviation in the potential from the infinite square well.

E1
n =

∫ a/2

0

2ǫ

a
sin2 nπx

a
dx =

∫ a/2

0

2ǫ

a2

(

1− cos
2nπx

a

)

dx =
ǫ

a

[

x− a

2nπ
sin

2nπx

a

]a/2

0
=
ǫ

2

This is the same for all n. The corrections in energy for the n=1 and n=2 levels are of intrest
(answer to a)).

E1
1 = E1

2 =
ǫ

2
= 0.235eV.

The two lowest unperturbed eigenergies are

En =
n2π2h̄2

2ma2
=

n2h2

8ma2
[n = 1] E1 =

n26.6260710−34

8 · 9.1093810−312.02 · 10−20
= 1.5061625 · 10−18J =

= 9.4007eV and E2 = 37.60285eV

To calculate the transition energy between two perturbed levels we first calculate the new
energys, due to the perturbation, for the two lowest levels:

E∗

1 = 9.4007125 + 0.235 = 9.6357125eV and E∗

2 = 37.60285 + 0.235 = 37.83785eV

The transition energy between the perturbed levels will be 37.83785 - 9.6357125 = 28.20214 eV.
The same would be for the unperturbed levels as the perturbation changes all levels by the same
energy (to first order).

2. (a) ih̄ ∂2

∂t2
sinωt = ih̄ω ∂

∂t
cosωt = −ih̄ω2 sinωt YES

(b) −ih̄ ∂
∂z
C(1 + z2) = −ih̄C(0 + 2z) NO

(c) −ih̄ ∂2

∂z2
(C1e

ikz + C2e
−ikz) = −ih̄ik ∂

∂z
(C1e

ikz − C2e
−ikz) = −ih̄k2(C1e

ikz + C2e
−ikz) YES

(d) − h̄
2

∂
∂z
Ce−3z = − h̄

2
C(−3)e−3z ∝ ψ(z) YES

(e) C
2
(z2 − ∂2

∂z2
)ze−

1

2
z2 =? This has to be done in some steps. Start by doing this derivative

first: − ∂2

∂z2
ze−

1

2
z2 = − ∂

∂z
(e−

1

2
z2 − z2e−

1

2
z2) = −(−ze− 1

2
z2 − 2ze−

1

2
z2 + z3e−

1

2
z2) =

3ze−
1

2
z2 − z3e−

1

2
z2 .

Now you go back to the start: C
2
(z2 − ∂2

∂z2
)ze−

1

2
z2 = C

2
(z3e−

1

2
z2 + 3ze−

1

2
z2 − z3e−

1

2
z2) =

C
2
(+3ze−

1

2
z2) = ∝ ψ(z) YES

(f) C
2
(z2 − ∂2

∂z2
)e−

1

2
z2 = C

2
(z2e−

1

2
z2 − ∂

∂z
(−ze− 1

2
z2)) = C

2
(z2e−

1

2
z2 − (−e− 1

2
z2 + z2e−

1

2
z2)) =

C
2
e−

1

2
z2 ∝ ψ(z) YES
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3. A measurement of the spin component in the direction n̂ = cosϕx̂+ sinϕŷ gives the value h̄/2.
The spin operator Sn̂ is

Sn̂ =
h̄

2

(

0 cosϕ− i sinϕ
cosϕ− i sinϕ 0

)

=
h̄

2

(

0 e−iϕ

eiϕ 0

)

The eigenvalue equation is

Sn̂χ = λχ⇔ h̄

2

(

0 e−iϕ

eiϕ 0

)(

a
b

)

= λ

(

a
b

)

(1)

We find the eigenvalues from

∣

∣

∣

∣

∣

−λ h̄
2
e−iϕ

h̄
2
eiϕ −λ

∣

∣

∣

∣

∣

= 0 ⇒ λ = ± h̄
2

(a) The spin state corresponding to λ = +h̄/2 must satisfy the eigenvalue equation Eq. (1), i.e.

χn̂+ =

(

a
b

)

= b

(

e−iϕ

1

)

⇒ χn̂+ =
1√
2

(

e−iϕ

1

)

,

where the normalization condition |a|2 + |b|2 = 1 was used in the last step. Other correct
solutions can be found by a multiplication with an arbitrary phase factor exp(iα).

(b) A general spin state can be written as χ = aχ+ + bχ−, where χ+ is spin up and χ− is spin
down in z-direction. For χn̂+ we find that the probability to measure spin up, i.e. Sz = h̄/2
is |a|2 = |e−iϕ/

√
2|2 = 1/2, and that the probability to measure spin down, i.e. Sz = −h̄/2

is |b|2 = |1/
√
2|2 = 1/2.

4. Hydrogenic atoms have eigenfunctions ψnlm = Rnl(r)Ylm(θ, ϕ). Using the Collection of

formulae we find

ψ100(r) =
(

Z3

πa3
0

)1/2
e−Zr/a0

ψ200(r) =
(

Z3

8πa3
0

)1/2 (

1− Zr
2a0

)

e−Zr/2a0

ψ210(r) =
(

Z3

32πa3
0

)1/2
Zr
a0

cos θe−Zr/2a0

ψ21±1(r) =
(

Z3

πa3
0

)1/2
Zr
8a0

sin θe±iϕe−Zr/2a0

where a0 is the Bohr radius. The β-decay instantaneously changes Z = 1 → Z = 2. According
to the expansion theorem, it is possible to express the wave function ui(r) before the decay as a
linear combination of eigenfunctions vj(r) after the decay as

ui(r) =
∑

j

ajvj(r)

where
aj =

∫

v∗j (r)ui(r)d
3r.

The probability to find the electron in state j is given by |aj|2.
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(a) Here ui = ψ100(Z = 1) and vj = ψ200(Z = 2). This gives

a =

(

1

πa30

)1/2 (
23

8πa30

)1/2
∫

∞

0
e−r/a0

(

1− 2r

2a0

)

e−2r/2a04πr2dr

=
4

a30

∫

∞

0
e−2r/a0

(

r2 − r3

a0

)

dr =
4

a30

[

2
(

a0
2

)3

− 6

a0

(

a0
2

)4
]

= −1

2
.

Thus, the probability is 1/4 = 0.25.

(b) For ui = ψ100(Z = 1) and vj = ψ210(Z = 2) the θ-integral is

∫ π

0
cos θ sin θdθ =

1

2

∫ π

0
sin 2θdθ =

[

−cos 2θ

4

]π

0

= 0.

For ui = ψ100(Z = 1) and vj = ψ21±1(Z = 2) the ϕ-integral is

∫ 2π

0
e±iϕdϕ = 0.

Thus, the probability to find the electron in a 2p state is zero.

(c) Here ui = ψ100(Z = 1) and vj = ψ100(Z = 2). This gives

a =

(

1

πa30

)1/2 (
23

πa30

)1/2
∫

∞

0
e−r/a0e−2r/a04πr2dr =

8
√
2

a30

∫

∞

0
e−3r/a0r2dr

=
8
√
2

a30

a30
33

∫

∞

0
e−xx2dx =

8
√
2

27

∫

∞

0
e−xx2dx =

8
√
2

27

∫

∞

0
2e−xdx =

16
√
2

27

Thus, the probability is 512/729 ≈ 0.70233.

(The probability to find the electron in ψ100(Z = 2) is 512/729 = 0.702. Therefore, the
electron is found with 95% probability in one of the states 1s or 2s.)

(d) No l has to be less than n.

5. (a) i. Π̂C
(

sin(πx
L
) + sin(3πx

L
)
)

= C
(

sin(−πx
L

) + sin(−3πx
L

)
)

= −C
(

sin(πx
L
) + sin(3πx

L
)
)

, the
eigenvalue is -1

ii. Π̂Ce−a
√

x2+y2+z2 = CCe−a
√

(−x)2+(−y)2+(−z)2 = Ce−a
√

x2+y2+z2 , the eigenvalue is +1

iii. Π̂Cf(r) (cos(θ) + cos3(θ)) eiφ = Cf(r) (cos(π − θ) + cos3(π − θ)) ei(φ+π) =
Cf(r) (− cos(θ) +−cos3(θ)) (−eiφ) = Cf(r) (cos(θ) + cos3(θ)) eiφ , the eigenvalue is
+1

(b) i. Π̂(2ψ+(x, y, z) + 3ψ−(x, y, z)) = +2ψ+(x, y, z) +−3ψ−(x, y, z) 6=
λ(2ψ+(x, y, z) + 3ψ−(x, y, z)) , not an eigenfunction.

ii. Π̂2(2ψ+(x, y, z) + 3ψ−(x, y, z)) = Π̂(+2ψ+(x, y, z) +−3ψ−(x, y, z)) =
2ψ+(x, y, z) + 3ψ−(x, y, z) , an eigenfunction with eigenvalue +1.

iii. Π̂e−ikx = e+ikx 6= e−ikx not an eigenfunction and neither is eikx. We can however form
linear combinations that have parity. The function eikx − e−ikx has parity
Π̂e+ikx − e−ikx = e−ikx − e+ikx = −1(e+ikx − e−ikx) with eigenvalue -1. The function
eikx + e−ikx has parity Π̂e+ikx + e−ikx = e−ikx + e+ikx = +1(e+ikx + e−ikx) with
eigenvalue +1.
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