LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics F0047T

Examination date: 2011-01-11

1. The eigenfunctions of the infinite square well are (Physics handbook)

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \text { and the eigenenergies are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \quad \text { where } \quad n=1,2,3, \ldots
$$

The correction to the eigenenergies due to perturbation is given by:

$$
\begin{aligned}
& E_{n}^{1}=<H_{1}>\text { where } H_{1} \text { is the deviation in the potential from the infinite square well. } \\
& E_{n}^{1}=\int_{0}^{a / 2} \frac{2 \epsilon}{a} \sin ^{2} \frac{n \pi x}{a} d x=\int_{0}^{a / 2} \frac{2 \epsilon}{a 2}\left(1-\cos \frac{2 n \pi x}{a}\right) d x=\frac{\epsilon}{a}\left[x-\frac{a}{2 n \pi} \sin \frac{2 n \pi x}{a}\right]_{0}^{a / 2}=\frac{\epsilon}{2}
\end{aligned}
$$

This is the same for all n. The corrections in energy for the $\mathrm{n}=1$ and $\mathrm{n}=2$ levels are of intrest (answer to a)).

$$
E_{1}^{1}=E_{2}^{1}=\frac{\epsilon}{2}=0.235 \mathrm{eV}
$$

The two lowest unperturbed eigenergies are

$$
\begin{aligned}
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}=\frac{n^{2} h^{2}}{8 m a^{2}}[n & =1] \quad E_{1}=\frac{n^{2} 6.6260710^{-34}}{8 \cdot 9.1093810^{-31} 2.0^{2} \cdot 10^{-20}}=1.5061625 \cdot 10^{-18} \mathrm{~J}= \\
& =9.4007 \mathrm{eV} \text { and } E_{2}=37.60285 \mathrm{eV}
\end{aligned}
$$

To calculate the transition energy between two perturbed levels we first calculate the new energys, due to the perturbation, for the two lowest levels:

$$
E_{1}^{*}=9.4007125+0.235=9.6357125 \mathrm{eV} \text { and } E_{2}^{*}=37.60285+0.235=37.83785 \mathrm{eV}
$$

The transition energy between the perturbed levels will be $37.83785-9.6357125=28.20214 \mathrm{eV}$. The same would be for the unperturbed levels as the perturbation changes all levels by the same energy (to first order).
2. (a) $i \hbar \frac{\partial^{2}}{\partial t^{2}} \sin \omega t=i \hbar \omega \frac{\partial}{\partial t} \cos \omega t=-i \hbar \omega^{2} \sin \omega t \quad$ YES
(b) $-i \hbar \frac{\partial}{\partial z} C\left(1+z^{2}\right)=-i \hbar C(0+2 z) \quad \mathrm{NO}$
(c) $-i \hbar \frac{\partial^{2}}{\partial z^{2}}\left(C_{1} e^{i k z}+C_{2} e^{-i k z}\right)=-i \hbar i k \frac{\partial}{\partial z}\left(C_{1} e^{i k z}-C_{2} e^{-i k z}\right)=-i \hbar k^{2}\left(C_{1} e^{i k z}+C_{2} e^{-i k z}\right) \quad$ YES
(d) $-\frac{\hbar}{2} \frac{\partial}{\partial z} C e^{-3 z}=-\frac{\hbar}{2} C(-3) e^{-3 z} \propto \psi(z) \quad$ YES
(e) $\frac{C}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right) z e^{-\frac{1}{2} z^{2}}=$? This has to be done in some steps. Start by doing this derivative first: $-\frac{\partial^{2}}{\partial z^{2}} z e^{-\frac{1}{2} z^{2}}=-\frac{\partial}{\partial z}\left(e^{-\frac{1}{2} z^{2}}-z^{2} e^{-\frac{1}{2} z^{2}}\right)=-\left(-z e^{-\frac{1}{2} z^{2}}-2 z e^{-\frac{1}{2} z^{2}}+z^{3} e^{-\frac{1}{2} z^{2}}\right)=$ $3 z e^{-\frac{1}{2} z^{2}}-z^{3} e^{-\frac{1}{2} z^{2}}$.
Now you go back to the start: $\frac{C}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right) z e^{-\frac{1}{2} z^{2}}=\frac{C}{2}\left(z^{3} e^{-\frac{1}{2} z^{2}}+3 z e^{-\frac{1}{2} z^{2}}-z^{3} e^{-\frac{1}{2} z^{2}}\right)=$ $\frac{C}{2}\left(+3 z e^{-\frac{1}{2} z^{2}}\right)=\propto \psi(z) \quad$ YES
(f) $\frac{C}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right) e^{-\frac{1}{2} z^{2}}=\frac{C}{2}\left(z^{2} e^{-\frac{1}{2} z^{2}}-\frac{\partial}{\partial z}\left(-z e^{-\frac{1}{2} z^{2}}\right)\right)=\frac{C}{2}\left(z^{2} e^{-\frac{1}{2} z^{2}}-\left(-e^{-\frac{1}{2} z^{2}}+z^{2} e^{-\frac{1}{2} z^{2}}\right)\right)=$ $\frac{C}{2} e^{-\frac{1}{2} z^{2}} \propto \psi(z) \quad$ YES
3. A measurement of the spin component in the direction $\hat{n}=\cos \varphi \hat{x}+\sin \varphi \hat{y}$ gives the value $\hbar / 2$. The spin operator $S_{\hat{n}}$ is

$$
S_{\hat{n}}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & \cos \varphi-i \sin \varphi \\
\cos \varphi-i \sin \varphi & 0
\end{array}\right)=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & e^{-i \varphi} \\
e^{i \varphi} & 0
\end{array}\right)
$$

The eigenvalue equation is

$$
S_{\hat{n} \chi}=\lambda \chi \Leftrightarrow \frac{\hbar}{2}\left(\begin{array}{cc}
0 & e^{-i \varphi} \tag{1}\\
e^{i \varphi} & 0
\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b}
$$

We find the eigenvalues from

$$
\left|\begin{array}{cc}
-\lambda & \frac{\hbar}{2} e^{-i \varphi} \\
\frac{\hbar}{2} e^{i \varphi} & -\lambda
\end{array}\right|=0 \Rightarrow \lambda= \pm \frac{\hbar}{2}
$$

(a) The spin state corresponding to $\lambda=+\hbar / 2$ must satisfy the eigenvalue equation Eq. (1), i.e.

$$
\chi_{\hat{n}+}=\binom{a}{b}=b\binom{e^{-i \varphi}}{1} \Rightarrow \chi_{\hat{n}+}=\frac{1}{\sqrt{2}}\binom{e^{-i \varphi}}{1}
$$

where the normalization condition $|a|^{2}+|b|^{2}=1$ was used in the last step. Other correct solutions can be found by a multiplication with an arbitrary phase factor $\exp (i \alpha)$.
(b) A general spin state can be written as $\chi=a \chi_{+}+b \chi_{-}$, where χ_{+}is spin up and χ_{-}is spin down in z-direction. For $\chi_{\hat{n}+}$ we find that the probability to measure spin up, i.e. $S_{z}=\hbar / 2$ is $|a|^{2}=\left|e^{-i \varphi} / \sqrt{2}\right|^{2}=1 / 2$, and that the probability to measure spin down, i.e. $S_{z}=-\hbar / 2$ is $|b|^{2}=|1 / \sqrt{2}|^{2}=1 / 2$.
4. Hydrogenic atoms have eigenfunctions $\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \varphi)$. Using the Collection of FORMULAE we find

$$
\begin{aligned}
& \psi_{100}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-Z r / a_{0}} \\
& \psi_{200}(\boldsymbol{r})=\left(\frac{Z^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \\
& \psi_{210}(\boldsymbol{r})=\left(\frac{Z^{3}}{32 \pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{a_{0}} \cos \theta e^{-Z r / 2 a_{0}} \\
& \psi_{21 \pm 1}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{8 a_{0}} \sin \theta e^{ \pm i \varphi} e^{-Z r / 2 a_{0}}
\end{aligned}
$$

where a_{0} is the Bohr radius. The β-decay instantaneously changes $Z=1 \rightarrow Z=2$. According to the expansion theorem, it is possible to express the wave function $u_{i}(\boldsymbol{r})$ before the decay as a linear combination of eigenfunctions $v_{j}(\boldsymbol{r})$ after the decay as

$$
u_{i}(\boldsymbol{r})=\sum_{j} a_{j} v_{j}(\boldsymbol{r})
$$

where

$$
a_{j}=\int v_{j}^{*}(\boldsymbol{r}) u_{i}(\boldsymbol{r}) d^{3} r .
$$

The probability to find the electron in state j is given by $\left|a_{j}\right|^{2}$.
(a) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{200}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}}\left(1-\frac{2 r}{2 a_{0}}\right) e^{-2 r / 2 a_{0}} 4 \pi r^{2} d r \\
& =\frac{4}{a_{0}^{3}} \int_{0}^{\infty} e^{-2 r / a_{0}}\left(r^{2}-\frac{r^{3}}{a_{0}}\right) d r=\frac{4}{a_{0}^{3}}\left[2\left(\frac{a_{0}}{2}\right)^{3}-\frac{6}{a_{0}}\left(\frac{a_{0}}{2}\right)^{4}\right]=-\frac{1}{2} .
\end{aligned}
$$

Thus, the probability is $1 / 4=0.25$.
(b) For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{210}(Z=2)$ the θ-integral is

$$
\int_{0}^{\pi} \cos \theta \sin \theta d \theta=\frac{1}{2} \int_{0}^{\pi} \sin 2 \theta d \theta=\left[-\frac{\cos 2 \theta}{4}\right]_{0}^{\pi}=0 .
$$

For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{21 \pm 1}(Z=2)$ the φ-integral is

$$
\int_{0}^{2 \pi} e^{ \pm i \varphi} d \varphi=0 .
$$

Thus, the probability to find the electron in a 2 p state is zero.
(c) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{100}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}} e^{-2 r / a_{0}} 4 \pi r^{2} d r=\frac{8 \sqrt{2}}{a_{0}^{3}} \int_{0}^{\infty} e^{-3 r / a_{0}} r^{2} d r \\
& =\frac{8 \sqrt{2}}{a_{0}^{3}} \frac{a_{0}^{3}}{3^{3}} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{8 \sqrt{2}}{27} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{8 \sqrt{2}}{27} \int_{0}^{\infty} 2 e^{-x} d x=\frac{16 \sqrt{2}}{27}
\end{aligned}
$$

Thus, the probability is $512 / 729 \approx 0.70233$.
(The probability to find the electron in $\psi_{100}(Z=2)$ is $512 / 729=0.702$. Therefore, the electron is found with 95% probability in one of the states 1 s or 2 s .)
(d) No l has to be less than n.
5. (a) i. $\hat{\Pi} C\left(\sin \left(\frac{\pi x}{L}\right)+\sin \left(\frac{3 \pi x}{L}\right)\right)=C\left(\sin \left(\frac{-\pi x}{L}\right)+\sin \left(\frac{-3 \pi x}{L}\right)\right)=-C\left(\sin \left(\frac{\pi x}{L}\right)+\sin \left(\frac{3 \pi x}{L}\right)\right)$, the eigenvalue is -1
ii. $\hat{\Pi} C e^{-a \sqrt{x^{2}+y^{2}+z^{2}}}=C C e^{-a \sqrt{(-x)^{2}+(-y)^{2}+(-z)^{2}}}=C e^{-a \sqrt{x^{2}+y^{2}+z^{2}}}$, the eigenvalue is +1
iii. $\hat{\Pi} C f(r)\left(\cos (\theta)+\cos ^{3}(\theta)\right) e^{i \phi}=C f(r)\left(\cos (\pi-\theta)+\cos ^{3}(\pi-\theta)\right) e^{i(\phi+\pi)}=$ $C f(r)\left(-\cos (\theta)+-\cos ^{3}(\theta)\right)\left(-e^{i \phi}\right)=C f(r)\left(\cos (\theta)+\cos ^{3}(\theta)\right) e^{i \phi}$, the eigenvalue is $+1$
(b) i. $\hat{\Pi}\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)=+2 \psi_{+}(x, y, z)+-3 \psi_{-}(x, y, z) \neq$ $\lambda\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)$, not an eigenfunction.
ii. $\hat{\Pi}^{2}\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)=\hat{\Pi}\left(+2 \psi_{+}(x, y, z)+-3 \psi_{-}(x, y, z)\right)=$ $2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)$, an eigenfunction with eigenvalue +1 .
iii. $\hat{\Pi} e^{-i k x}=e^{+i k x} \neq e^{-i k x}$ not an eigenfunction and neither is $e^{i k x}$. We can however form linear combinations that have parity. The function $e^{i k x}-e^{-i k x}$ has parity $\hat{\Pi} e^{+i k x}-e^{-i k x}=e^{-i k x}-e^{+i k x}=-1\left(e^{+i k x}-e^{-i k x}\right)$ with eigenvalue -1 . The function $e^{i k x}+e^{-i k x}$ has parity $\hat{\Pi} e^{+i k x}+e^{-i k x}=e^{-i k x}+e^{+i k x}=+1\left(e^{+i k x}+e^{-i k x}\right)$ with eigenvalue +1 .

