LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics F0047T

Examination date: 2011-03-15

1. First choose a coordinate system. If we put the direction of the incoming photon λ along the x -axis positive direction and let the outgoing photon λ^{\prime} go out along the y -axis in positive direction.

We can start with the obseravation that as all momentum before the incident is in the positive x-direction this has to be true also after the collision. So as momentum is conserved and the photon λ^{\prime} leaves in the positive y direction, we make the following conclusions about the electron. The electron must have the same y-momentum in oposite direction to keep the total y momentum zero and the momentum the electron obtaines in the x -driection must be the same as that of the incident photon as the outgoing photon does not carry away any momentum in the x -direction.
(a) for Compton scattering we have the following relation $\lambda^{\prime}-\lambda=\frac{h}{m_{e c}}(1-\cos \theta)$.
$\lambda=\frac{h c}{E_{\text {photon }}}=\frac{6.626 \cdot 10^{-34} 2.998 \cdot 10^{8}}{100 \cdot 10^{3} 1.602 \cdot 10^{-19}}=1.240 \cdot 10^{-11} \mathrm{~m}=0.1240 \AA$. The wave lengt of the 'new' photon will be
$\lambda^{\prime}=\lambda+\frac{h}{m_{e} c}=\lambda+\frac{6.626 \cdot 10^{-34}}{9.109 \cdot 10^{-312.998 \cdot 10^{8}}}=1.240 \cdot 10^{-11}+2.426 \cdot 10^{-12}=1.4826 \cdot 10^{-11} \mathrm{~m}$. The energy is $E=\frac{h c}{\lambda^{\prime}}=\frac{6.626 \cdot 10^{-34} 2.998 \cdot 10^{8}}{1.4826 \cdot 10^{-11}}=1.3399 \cdot 10^{-14} \mathrm{~m}=83.637 \mathrm{keV}=83.6 \mathrm{keV}$.
(b) The energy of the electron will be: $100-83.6=16.4 \mathrm{keV}$.
(c) Use conservation of momentum. To calculate the recoil of the electron we have to calculate the momentum of the photon h / λ.

$$
\begin{aligned}
& p_{x}^{0}=p_{x}^{1}+p_{x}^{\text {electron }} \\
& p_{y}^{0}=p_{y}^{1}+p_{y}^{\text {electron }}
\end{aligned}
$$

Before the incident $p_{x}^{0}=\frac{6.626 \cdot 10^{-34}}{1.240 \cdot 10^{-11}}=5.3435 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and $p_{y}^{0}=0$.
After the incident the photon has: $p_{y}^{1}=\frac{6.626 \cdot 10^{-34}}{1.4826 \cdot 10^{-11}}=4.4692 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and $p_{x}^{1}=0$.
This yields for the electron $p_{x}^{\text {electron }}=p_{x}^{0}=5.3435 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and
$p_{y}^{\text {electron }}=-p_{y}^{1}=-4.4692 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. The angle of the recoil α is given by
$\tan \alpha=\frac{p_{y}^{\text {electron }}}{p_{x}^{\text {Decetron }}}=\frac{-4.4692}{5.3435}=0.8364$ which gives $\alpha=-39.9^{\circ}$ (note sign).
The length of the electrons momentum vector is
$p^{\text {electron }}=\sqrt{5.3435^{2}+4.4692^{2}} \cdot 10^{-23}=6.9661 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. The kinetic energy of the electron can also be calculated from
$E_{k i n}=p^{2} / 2 m=6.9661 \cdot 10^{-23} / 29.109 \cdot 10^{-31}=2.6636 \cdot 10^{-15}=16.6 \mathrm{keV}$, the same result as in b .
2. Energinivå för rotationstillstånd J ges av: $E=\frac{\hbar^{2}}{2 I} J(J+1)$, energiskillnad
$\Delta E=E_{J+1}-E_{J}=\frac{\hbar^{2}}{I}(J+1)$ där $I=\mu d^{2}=\frac{1}{2} m d^{2}=\frac{1}{2} 14 u d^{2}$. Strålningens våglängd fås ur $\Delta E=\frac{h c}{\lambda}$, lös ut $J: J+1=\frac{2 \pi \frac{1}{2} m d^{2} c}{\hbar \lambda}=\frac{14 \pi 1.66 \cdot 10^{-27}\left(1.094 \cdot 10^{-10}\right)^{2} 2.997 \cdot 10^{8}}{1.055 \cdot 10^{-34} 1250 \cdot 10^{-6}} \approx 1.98 \mathrm{dvs} \mathrm{J}=1$.
Impulsmomentet ges av $\sqrt{J(J+1)} \hbar$ dvs $\hbar \sqrt{6}$ resp $\hbar \sqrt{2}$. Skillnaden blir $\hbar(\sqrt{6}-\sqrt{2})=1.04 \hbar=1.09710^{-34} \mathrm{Nm}$.

$$
\begin{aligned}
& \left\langle S_{x}\right\rangle=\frac{1}{9}(2+i, 2) \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{2-i}{2}=\frac{4}{9} \hbar \\
& \left.<S_{y}\right\rangle=\frac{1}{9}(2+i, 2) \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{2-i}{2}=\frac{2}{9} \hbar \\
& \left.<S_{z}\right\rangle=\frac{1}{9}(2+i, 2) \frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{2-i}{2}=\frac{1}{18} \hbar
\end{aligned}
$$

För spinnmatriserna gäller att σ_{i}^{2} är lika med enhetsmatrisen för i lika med x, y eller z. Detta ger:

$$
<S_{x}^{2}>=<S_{y}^{2}>=<S_{z}^{2}>=\hbar^{2} \frac{1}{36}(2+i, 2)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{2-i}{2}=\frac{1}{4} \hbar^{2}
$$

4. Rewrite $L_{x}^{2}+L_{y}^{2}=L^{2}-L_{z}^{2}$, which gives the Hamiltonian

$$
H=\frac{L^{2}-L_{z}^{2}}{3 \hbar^{2}}+\frac{L_{z}^{2}}{4 \hbar^{2}} .
$$

The eigenfunctions are $Y_{l, m}$

$$
H Y_{l, m}=\left(\frac{L^{2}-L_{z}^{2}}{3 \hbar^{2}}+\frac{L_{z}^{2}}{4 \hbar^{2}}\right) Y_{l, m}=\left(\frac{l(l+1) \hbar^{2}-m^{2} \hbar^{2}}{3 \hbar^{2}}+\frac{m^{2} \hbar^{2}}{4 \hbar^{2}}\right) Y_{l, m}
$$

Hence the energies are:

$$
E_{l, m}=\left(\frac{l(l+1)}{3}-\frac{m^{2}}{12}\right)
$$

The lowest (ground state) energy is $E_{0,0}=0(l=0$ no rotation).
$l=1 \rightarrow m=0, \pm 1$, gives $E_{1,0}=\frac{2}{3} \mathrm{eV} E_{1, \pm 1}=\frac{7}{12} \mathrm{eV}$
$l=2 \rightarrow m=0, \pm 1, \pm 2$, gives $E_{2,0}=2 \mathrm{eV} E_{2, \pm 1}=\frac{23}{12} \mathrm{eV} E_{2, \pm 2}=\frac{5}{3} \mathrm{eV}$
and so on.
5. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in one dimesion is adequate). The width of the well is a.

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \text { and the eigenenergys are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \quad \text { where } \quad n=1,2,3, \ldots
$$

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about separation of variables is needed to justify the structure of the solution)
$\Psi_{n, m, l}(x, y)=\psi_{n}(x) \cdot \psi_{m}(y) \cdot \psi_{l}(z)$ and eigenenergys $E_{n, m}=E_{n}+E_{m}+E_{l}$ where the indecies are $n=1,2,3, . ., m=1,2,3, .$. and $l=1,2,3, .$.
a) The eigenfunctions inside the box are (note the sidelength is $a / 2$ for one of the sides)
$\Psi_{n, m, l}(x, y, z)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \cdot \sqrt{\frac{2}{a}} \sin \frac{m \pi y}{a} \cdot \sqrt{\frac{4}{a}} \sin \frac{l \pi 2 z}{a}$ where $n=1,2,3, . ., m=1,2,3, .$. and $l=1,2,3$,
The eigenfunctions outside the box are $\Psi_{n, m, l}(x, y, z)=0$
b) The seven lowest eigenenergys are (note the 4 associated to the quantum number l this is due to that the length of the box along the z direction is only half of the other two that are of equal length):
$E_{n, m, l}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n^{2}+m^{2}+4 l^{2}\right)$, where the 7 lowest are $\left(n^{2}+m^{2}+4 l^{2}\right)=6,9,12,14,18$, and 21.
c) The seven lowest eigenenergys have degeneracys (different ways to choose n, m, l to form the same energy) (either one, two or four) as follows:

$$
\begin{gathered}
E_{1,1,1}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=6\right) \\
E_{1,2,1}=E_{2,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=9\right) \\
E_{2,2,1}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=12\right) \\
E_{1,3,1}=E_{3,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=14\right) \\
E_{2,3,1}=E_{3,2,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=17\right) \\
E_{1,1,2}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=18\right)
\end{gathered}
$$

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a symmetry operation, ie some of these states are accidentally degenerated. These four can be grouped in the following way.

$$
\begin{aligned}
& E_{1,2,2}=E_{2,1,2}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=21\right) \\
& E_{1,4,1}=E_{4,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=21\right)
\end{aligned}
$$

