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1. First choose a coordinate system. If we put the direction of the incoming photon λ along the
x-axis positive direction and let the outgoing photon λ′ go out along the y-axis in positive
direction.

We can start with the obseravation that as all momentum before the incident is in the positive
x-direction this has to be true also after the collision. So as momentum is conserved and the
photon λ′ leaves in the positive y direction, we make the following conclusions about the
electron. The electron must have the same y-momentum in oposite direction to keep the total y
momentum zero and the momentum the electron obtaines in the x-driection must be the same
as that of the incident photon as the outgoing photon does not carry away any momentum in
the x-direction.

(a) for Compton scattering we have the following relation λ′ − λ = h
mec

(1− cosθ).
λ = hc

Ephoton
= 6.626·10−342.998·108

100·1031.602·10−19 = 1.240 · 10−11m = 0.1240 Å. The wave lengt of the ’new’

photon will be
λ′ = λ+ h

mec
= λ+ 6.626·10−34

9.109·10−312.998·108
= 1.240 · 10−11 + 2.426 · 10−12 = 1.4826 · 10−11m. The

energy is E = hc
λ′

= 6.626·10−342.998·108

1.4826·10−11 = 1.3399 · 10−14m = 83.637keV = 83.6 keV.

(b) The energy of the electron will be: 100 - 83.6 = 16.4 keV.

(c) Use conservation of momentum. To calculate the recoil of the electron we have to calculate
the momentum of the photon h/λ.

p0
x = p1

x + pelectronx

p0
y = p1

y + pelectrony

Before the incident p0
x = 6.626·10−34

1.240·10−11 = 5.3435 · 10−23 kg m/s and p0
y = 0.

After the incident the photon has: p1
y = 6.626·10−34

1.4826·10−11 = 4.4692 · 10−23 kg m/s and p1
x = 0.

This yields for the electron pelectronx = p0
x = 5.3435 · 10−23 kg m/s and

pelectrony = −p1
y = −4.4692 · 10−23 kg m/s. The angle of the recoil α is given by

tanα =
pelectrony

pelectronx
= −4.4692

5.3435
= 0.8364 which gives α = −39.9o (note sign).

The length of the electrons momentum vector is
pelectron =

√
5.34352 + 4.46922 · 10−23 = 6.9661 · 10−23 kg m/s. The kinetic energy of the

electron can also be calculated from
Ekin = p2/2m = 6.9661 · 10−23/29.109 · 10−31 = 2.6636 · 10−15 = 16.6keV, the same result as
in b.

2. Energiniv̊a för rotationstillst̊and J ges av: E = h̄2

2I
J(J + 1), energiskillnad

∆E = EJ+1 − EJ = h̄2

I
(J + 1) där I = µd2 = 1

2
md2 = 1

2
14ud2. Str̊alningens v̊aglängd f̊as ur

∆E = hc
λ

, lös ut J : J + 1 =
2π 1

2
md2c

h̄λ
= 14 π 1.66·10−27(1.094·10−10)2 2.997·108

1.055·10−34 1250·10−6 ≈ 1.98 dvs J=1.

Impulsmomentet ges av
√
J(J + 1)h̄ dvs h̄

√
6 resp h̄

√
2. Skillnaden blir

h̄(
√

6−
√

2) = 1.04h̄ = 1.097 10−34 Nm.
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3.

< Sx >=
1

9
(2 + i, 2)

h̄

2

(
0 1
1 0

)(
2− i

2

)
=

4

9
h̄

< Sy >=
1

9
(2 + i, 2)

h̄

2

(
0 −i
i 0

)(
2− i

2

)
=

2

9
h̄

< Sz >=
1

9
(2 + i, 2)

h̄

2

(
1 0
0 −1

)(
2− i

2

)
=

1

18
h̄

För spinnmatriserna gäller att σ2
i är lika med enhetsmatrisen för i lika med x, y eller z. Detta

ger:

< S2
x >=< S2

y >=< S2
z >= h̄2 1

36
(2 + i, 2)

(
1 0
0 1

)(
2− i

2

)
=

1

4
h̄2

4. Rewrite L2
x + L2

y = L2 − L2
z, which gives the Hamiltonian

H =
L2 − L2

z

3h̄2 +
L2
z

4h̄2 .

The eigenfunctions are Yl,m

HYl,m =

(
L2 − L2

z

3h̄2 +
L2
z

4h̄2

)
Yl,m =

(
l(l + 1)h̄2 −m2h̄2

3h̄2 +
m2h̄2

4h̄2

)
Yl,m.

Hence the energies are:

El,m =

(
l(l + 1)

3
− m2

12

)
.

The lowest (ground state) energy is E0,0 = 0 (l = 0 no rotation).

l = 1→ m = 0,±1, gives E1,0 = 2
3
eV E1,±1 = 7

12
eV

l = 2→ m = 0,±1,±2, gives E2,0 = 2eV E2,±1 = 23
12

eV E2,±2 = 5
3
eV

and so on.

5. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in
one dimesion is adequate). The width of the well is a.

ψn(x) =

√
2

a
sin

nπx

a
and the eigenenergys are En =

n2π2h̄2

2ma2
where n = 1, 2, 3, ...

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about
separation of variables is needed to justify the structure of the solution)

Ψn,m,l(x, y) = ψn(x) · ψm(y) · ψl(z) and eigenenergys En,m = En +Em +El where the indecies are
n = 1, 2, 3, .. , m = 1, 2, 3, .. and l = 1, 2, 3, ..

a) The eigenfunctions inside the box are (note the sidelength is a/2 for one of the sides)

Ψn,m,l(x, y, z) =

√
2

a
sin

nπx

a
·
√

2

a
sin

mπy

a
·
√

4

a
sin

lπ2z

a
where n = 1, 2, 3, .. ,m = 1, 2, 3, .. and l = 1, 2, 3, ..

The eigenfunctions outside the box are Ψn,m,l(x, y, z) = 0
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b) The seven lowest eigenenergys are (note the 4 associated to the quantum number l this is due
to that the length of the box along the z direction is only half of the other two that are of equal
length):

En,m,l =
π2h̄2

2ma2
(n2 +m2 + 4l2), where the 7 lowest are (n2 +m2 + 4l2) = 6, 9, 12, 14, 18, and 21.

c) The seven lowest eigenenergys have degeneracys (different ways to choose n,m, l to form the
same energy) (either one, two or four) as follows:

E1,1,1 = one state (n2 +m2 + 4l2 = 6)

E1,2,1 = E2,1,1 = two states (n2 +m2 + 4l2 = 9)

E2,2,1 = one state (n2 +m2 + 4l2 = 12)

E1,3,1 = E3,1,1 = two states (n2 +m2 + 4l2 = 14)

E2,3,1 = E3,2,1 = two states (n2 +m2 + 4l2 = 17)

E1,1,2 = one state (n2 +m2 + 4l2 = 18)

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a
symmetry operation, ie some of these states are accidentally degenerated. These four can be
grouped in the following way.

E1,2,2 = E2,1,2 = two states (n2 +m2 + 4l2 = 21)

E1,4,1 = E4,1,1 = two states (n2 +m2 + 4l2 = 21)
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