LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics F0047T

Examination date: 2011-08-27

1. The rotational energy of a molecule is given by

$$
E_{l}=\frac{\hbar^{2}}{2 I} l(l+1)
$$

The emitted photon energy for a transition $l+1$ to l is given by

$$
E_{\text {photon }}=\frac{\hbar^{2}}{2 I}((l+1)(l+2)-l(l+1))=\frac{\hbar^{2}}{2 I}\left(l^{2}+3 l-2-l^{2}-l\right)=\frac{\hbar^{2}(l+1)}{I}
$$

This is the energy for one line and there will be a set of lines all for different l. The separation between two adjecent lines in energy will be

$$
E_{\text {photon }, l+2}-E_{\text {photon }, l+1}=\frac{\hbar^{2}(l+2)}{I}-\frac{\hbar^{2}(l+1)}{I}=\frac{\hbar^{2}}{I}
$$

The energy of a photon is $E_{\text {photon }}=\frac{h c}{\lambda}$ and hence

$$
\begin{gathered}
\frac{\hbar^{2}}{I}=h c\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)=1.2398 \cdot 10^{-6}\left(\Delta \frac{1}{\lambda}\right) \mathrm{eV} \mathrm{~m}=1.2398 \cdot 10^{-6} \cdot 20.68 \mathrm{~cm}^{-1}=2.564 \cdot 10^{-3} \mathrm{eV} \\
I=\frac{\left(1.055 \cdot 10^{-34}\right)^{2}}{2.564 \cdot 10^{-3} \cdot 1.602 \cdot 10^{-19}}=2.71 \cdot 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}
\end{gathered}
$$

The moment of inertia is $I=m r^{2}$ where $m=m_{H} m_{C l} /\left(m_{H}+m_{C l}\right)=35 / 36 m_{H}$ and r is the average separation. $r=\sqrt{\frac{I}{m}}=\sqrt{\frac{36 \cdot 2.71 \cdot 10^{-47}}{35 \cdot 1.673 \cdot 10^{-27}}}=1.29 \cdot 10^{-10} \mathrm{~m}$
$E_{l}=\frac{2.56 \cdot 10^{-3}}{2} l(l+1) \mathrm{eV}$
$E_{0}=0 \mathrm{eV}$,
$E_{1}=2.56 \cdot 10^{-3} \mathrm{eV}=4.10 \cdot 10^{-22} \mathrm{~J}$,
$E_{2}=7.68 \cdot 10^{-3} \mathrm{eV}=1.23 \cdot 10^{-21} \mathrm{~J}$,
$E_{3}=15.4 \cdot 10^{-3} \mathrm{eV}=2.47 \cdot 10^{-21} \mathrm{~J}$,
$E_{3}=25.6 \cdot 10^{-3} \mathrm{eV}=4.10 \cdot 10^{-21} \mathrm{~J}$.
2. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in one dimesion is adequate). The width of the well is a.

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \text { and the eigenenergys are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \quad \text { where } \quad n=1,2,3, \ldots
$$

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about separation of variables is needed to justify the structure of the solution)
$\Psi_{n, m, l}(x, y)=\psi_{n}(x) \cdot \psi_{m}(y) \cdot \psi_{l}(z)$ and eigenenergys $E_{n, m}=E_{n}+E_{m}+E_{l}$ where the indecies are $n=1,2,3, . ., m=1,2,3, .$. and $l=1,2,3, .$.
a) The eigenfunctions inside the box are (note the sidelength is $a / 2$ for one of the sides)
$\Psi_{n, m, l}(x, y, z)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \cdot \sqrt{\frac{2}{a}} \sin \frac{m \pi y}{a} \cdot \sqrt{\frac{4}{a}} \sin \frac{l \pi 2 z}{a}$ where $n=1,2,3, . ., m=1,2,3, .$. and $l=1,2,3$,
The eigenfunctions outside the box are $\Psi_{n, m, l}(x, y, z)=0$
b) The seven lowest eigenenergys are (note the 4 associated to the quantum number l this is due to that the length of the box along the z direction is only half of the other two that are of equal length):
$E_{n, m, l}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n^{2}+m^{2}+4 l^{2}\right)$, where the 7 lowest are $\left(n^{2}+m^{2}+4 l^{2}\right)=6,9,12,14,18$, and 21.
c) The seven lowest eigenenergys have degeneracys (different ways to choose n, m, l to form the same energy) (either one, two or four) as follows:

$$
\begin{gathered}
E_{1,1,1}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=6\right) \\
E_{1,2,1}=E_{2,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=9\right) \\
E_{2,2,1}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=12\right) \\
E_{1,3,1}=E_{3,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=14\right) \\
E_{2,3,1}=E_{3,2,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=17\right) \\
E_{1,1,2}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=18\right)
\end{gathered}
$$

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a symmetry operation, ie some of these states are accidentally degenerated. These four can be grouped in the following way.

$$
\begin{aligned}
& E_{1,2,2}=E_{2,1,2}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=21\right) \\
& E_{1,4,1}=E_{4,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=21\right)
\end{aligned}
$$

3. Rewrite $L_{x}^{2}+L_{y}^{2}=L^{2}-L_{z}^{2}$, which gives the Hamiltonian

$$
H=\frac{L^{2}-L_{z}^{2}}{2 \hbar^{2}}+\frac{L_{z}^{2}}{3 \hbar^{2}}
$$

The eigenfunctions are $Y_{l, m}$

$$
H Y_{l, m}=\left(\frac{L^{2}-L_{z}^{2}}{2 \hbar^{2}}+\frac{L_{z}^{2}}{3 \hbar^{2}}\right) Y_{l, m}=\left(\frac{l(l+1) \hbar^{2}-m^{2} \hbar^{2}}{2 \hbar^{2}}+\frac{m^{2} \hbar^{2}}{3 \hbar^{2}}\right) Y_{l, m}
$$

Hence the energies are:

$$
E_{l, m}=\left(\frac{l(l+1)}{2}-\frac{m^{2}}{6}\right)
$$

The lowest (ground state) energy is $E_{0,0}=0(l=0$ no rotation).
$l=1 \rightarrow m=0, \pm 1$, gives $E_{1,0}=1 \mathrm{eV} E_{1, \pm 1}=\frac{5}{6} \mathrm{eV}$
$l=2 \rightarrow m=0, \pm 1, \pm 2$, gives $E_{2,0}=3 \mathrm{eV} E_{2, \pm 1}=\frac{17}{6} \mathrm{eV} E_{2, \pm 2}=\frac{7}{3} \mathrm{eV}$
and so on.
4. Rewrite the wave function in terms of spherical harmonics: (polar coordinates: $x=r \sin \theta \cos \phi, z=r \cos \theta$ and hence $z x=r^{2} \cos \theta \sin \theta\left(e^{i \phi}+e^{-i \phi}\right) / 2$ using the Euler relations) the appropriate spherical harmonics can now be identified and we arrive at

$$
\begin{equation*}
\psi(\boldsymbol{r})=\psi(x, y, z)=N(z x) e^{-r / 3 a_{0}}=N \frac{r^{2}}{2} \sqrt{\frac{8 \pi}{15}}\left(-Y_{2,1}+Y_{2,-1}\right) e^{-r / 3 a_{0}} \tag{1}
\end{equation*}
$$

As all the involved $Y_{l, m}$ have $l=2$ the probability to get $\mathbf{L}^{2}=2(2+1) \hbar^{2}=6 \hbar^{2}$ is one. For the operator L_{z} we note the two spherical harmonics have the same pre factor (one has -1 and the other has +1 but the absolute value square is the same) ie they will have the same probability. The probability to find $m=2 \hbar$ is 0 , for $m=1 \hbar$ is $\frac{1}{2}$, for $m=0 \hbar$ is 0 for $m=-1 \hbar$ is $\frac{1}{2}$, and for $m=-2 \hbar$ is 0 . As all the involved $Y_{l, m}$ have $l=2$ the probability to get $\mathbf{L}^{2}=2(2+1) \hbar^{2}=6 \hbar^{2}$ is one.
b. To calculate the expectation value $\langle r\rangle$ we need to normalise the given wave function if we wish to do the integral. In order to achieve this in a simple way is to identify the radial wave function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or equal to 3 . By inspection of eq (1) and 2 we find $n=3$ this function has the correct exponential and the correct power of $r\left(r^{2}\right)$ and hence $R_{3,2}(r)=\frac{2 \sqrt{2}}{27 \sqrt{5}}\left(\frac{Z}{3 a_{0}}\right)^{3 / 2}\left(\frac{Z r}{a_{0}}\right)^{2} e^{-Z r / 3 a_{0}}$. We also note that $Y_{2,1}$ and $Y_{2,-1}$ are normalised but the sum $\left(-Y_{2,1}+Y_{2,-1}\right)$ is not normalised. The sum has to be changed to $\left(-\frac{1}{\sqrt{2}} Y_{2,1}+\frac{1}{\sqrt{2}} Y_{2,-1}\right)$ in order to be normalised. Note that $R_{3,2}(r)$ contains an r^{2} term as also a $e^{-r / 3 a_{0}}$ term. The wave function can now be completed to the following normalized wave function (note that we do not need to calculate the constant N as all separate parts of $\psi(r)$ are normalised by them selves)

$$
\psi(\boldsymbol{r})=\psi(x, y, z)=N(z x) e^{-r / 3 a_{0}}=R_{3,2}(r)\left(-\frac{1}{\sqrt{2}} Y_{2,1}+\frac{1}{\sqrt{2}} Y_{2,-1}\right)
$$

From physics handbook page 292 you find

$$
\begin{gathered}
\langle r\rangle=\frac{1}{2}\left[3 n^{2}-l(l+1)\right]\left(\frac{a_{0}}{Z}\right)=\frac{1}{2}\left[33^{2}-2(2+1)\right]\left(\frac{a_{0}}{1}\right)=\frac{21}{2} a_{0}= \\
10.5 \cdot 0.5292 \AA=5.56 \AA .
\end{gathered}
$$

You may also do the integral directly like this:

$$
\begin{gathered}
\langle r\rangle=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} d \phi d \theta d r r^{2} \sin (\theta) r\left|R_{3,2}(r)\right|^{2}\left|\left(-\frac{1}{\sqrt{2}} Y_{2,1}+\frac{1}{\sqrt{2}} Y_{2,-1}\right)\right|^{2}= \\
\int_{0}^{\infty} d r r^{3}\left|R_{3,2}(r)\right|^{2}=\frac{21}{2} a_{0}=10.5 \cdot 0.5292 \AA=5.56 \AA
\end{gathered}
$$

5. (a) To show that $\psi^{+}(\xi)=A \xi e^{+\xi^{2} / 2}$ solves the differential equation put it in! The first derivative and second derivatives are (A cancels out):

$$
\frac{d \psi^{+}(\xi)}{d \xi}=e^{+\xi^{2} / 2}+\xi^{2} e^{+\xi^{2} / 2} \text { and } \frac{d^{2} \psi^{+}(\xi)}{d \xi^{2}}=\xi e^{+\xi^{2} / 2}+2 \xi e^{+\xi^{2} / 2}+\xi^{3} e^{+\xi^{2} / 2}=3 \xi e^{+\xi^{2} / 2}+\xi^{3} e^{+\xi^{2} / 2}
$$

Now evaluate the following:

$$
\frac{d^{2} \psi^{+}(\xi)}{d \xi^{2}}+\left(\lambda^{+}-\xi^{2}\right) \psi^{+}(\xi)=\left(\lambda^{+}+3\right) \xi e^{+\xi^{2} / 2}+\xi^{3} e^{+\xi^{2} / 2}-\xi^{3} e^{+\xi^{2} / 2}=\left(\lambda^{+}+3\right) \xi e^{+\xi^{2} / 2}=0
$$

If $\lambda^{+}=-3$ the desired result is reached.
The same yields for $\psi^{-}(\xi)=B \xi e^{-\xi^{2} / 2}$. The first derivative and second derivatives are (B cancels out):
$\frac{d \psi^{-}(\xi)}{d \xi}=e^{-\xi^{2} / 2}-\xi^{2} e^{-\xi^{2} / 2}$ and $\frac{d^{2} \psi^{-}(\xi)}{d \xi^{2}}=-\xi e^{-\xi^{2} / 2}-2 \xi e^{-\xi^{2} / 2}+\xi^{3} e^{-\xi^{2} / 2}=-3 \xi e^{-\xi^{2} / 2}+\xi^{3} e^{-\xi^{2} / 2}$
Now evaluate the following:

$$
\frac{d^{2} \psi^{-}(\xi)}{d \xi^{2}}+\left(\lambda^{-}-\xi^{2}\right) \psi^{-}(\xi)=\left(\lambda^{-}-3\right) \xi e^{-\xi^{2} / 2}+\xi^{3} e^{-\xi^{2} / 2}-\xi^{3} e^{-\xi^{2} / 2}=\left(\lambda^{-}-3\right) \xi e^{-\xi^{2} / 2}=0
$$

If $\lambda^{-}=+3$ the desired result is reached.
(b) Only one is physical acceptable $\psi^{-}(\xi)$ as it can be normalised. The othe function $\psi^{+}(\xi)$ is not acceptable as it cannot be normalized and therefore it does not describe a particle.

