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1. The rotational energy of a molecule is given by

El =
h̄2

2I
l(l + 1)

The emitted photon energy for a transition l + 1 to l is given by

Ephoton =
h̄2

2I
((l + 1)(l + 2)− l(l + 1)) =

h̄2

2I

(
l2 + 3l − 2− l2 − l

)
=
h̄2(l + 1)

I

This is the energy for one line and there will be a set of lines all for different l. The separation
between two adjecent lines in energy will be

Ephoton,l+2 − Ephoton,l+1 =
h̄2(l + 2)

I
− h̄2(l + 1)

I
=
h̄2

I

The energy of a photon is Ephoton = hc
λ

and hence

h̄2

I
= hc

(
1

λ1
− 1

λ2

)
= 1.2398 · 10−6

(
∆

1

λ

)
eV m = 1.2398 · 10−6 · 20.68cm−1 = 2.564 · 10−3eV

I =
(1.055 · 10−34)2

2.564 · 10−3 · 1.602 · 10−19
= 2.71 · 10−47kg m2

The moment of inertia is I = mr2 where m = mHmCl/(mH +mCl) = 35/36mH and r is the

average separation. r =
√

I
m

=
√

36· 2.71·10−47

35· 1.673·10−27 = 1.29 · 10−10m

El = 2.56·10−3

2
l(l + 1)eV

E0 = 0eV,
E1 = 2.56 · 10−3eV = 4.10 · 10−22J,
E2 = 7.68 · 10−3eV = 1.23 · 10−21J,
E3 = 15.4 · 10−3eV = 2.47 · 10−21J,
E3 = 25.6 · 10−3eV = 4.10 · 10−21J.

2. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in
one dimesion is adequate). The width of the well is a.

ψn(x) =

√
2

a
sin

nπx

a
and the eigenenergys are En =

n2π2h̄2

2ma2
where n = 1, 2, 3, ...

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about
separation of variables is needed to justify the structure of the solution)

Ψn,m,l(x, y) = ψn(x) · ψm(y) · ψl(z) and eigenenergys En,m = En +Em +El where the indecies are
n = 1, 2, 3, .. , m = 1, 2, 3, .. and l = 1, 2, 3, ..

a) The eigenfunctions inside the box are (note the sidelength is a/2 for one of the sides)
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Ψn,m,l(x, y, z) =

√
2

a
sin

nπx

a
·
√

2

a
sin

mπy

a
·
√

4

a
sin

lπ2z

a
where n = 1, 2, 3, .. ,m = 1, 2, 3, .. and l = 1, 2, 3, ..

The eigenfunctions outside the box are Ψn,m,l(x, y, z) = 0
b) The seven lowest eigenenergys are (note the 4 associated to the quantum number l this is due
to that the length of the box along the z direction is only half of the other two that are of equal
length):

En,m,l =
π2h̄2

2ma2
(n2 +m2 + 4l2), where the 7 lowest are (n2 +m2 + 4l2) = 6, 9, 12, 14, 18, and 21.

c) The seven lowest eigenenergys have degeneracys (different ways to choose n,m, l to form the
same energy) (either one, two or four) as follows:

E1,1,1 = one state (n2 +m2 + 4l2 = 6)

E1,2,1 = E2,1,1 = two states (n2 +m2 + 4l2 = 9)

E2,2,1 = one state (n2 +m2 + 4l2 = 12)

E1,3,1 = E3,1,1 = two states (n2 +m2 + 4l2 = 14)

E2,3,1 = E3,2,1 = two states (n2 +m2 + 4l2 = 17)

E1,1,2 = one state (n2 +m2 + 4l2 = 18)

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a
symmetry operation, ie some of these states are accidentally degenerated. These four can be
grouped in the following way.

E1,2,2 = E2,1,2 = two states (n2 +m2 + 4l2 = 21)

E1,4,1 = E4,1,1 = two states (n2 +m2 + 4l2 = 21)

3. Rewrite L2
x + L2

y = L2 − L2
z, which gives the Hamiltonian

H =
L2 − L2

z

2h̄2
+
L2
z

3h̄2
.

The eigenfunctions are Yl,m

HYl,m =

(
L2 − L2

z

2h̄2
+
L2
z

3h̄2

)
Yl,m =

(
l(l + 1)h̄2 −m2h̄2

2h̄2
+
m2h̄2

3h̄2

)
Yl,m.

Hence the energies are:

El,m =

(
l(l + 1)

2
− m2

6

)
.

The lowest (ground state) energy is E0,0 = 0 (l = 0 no rotation).

l = 1→ m = 0,±1, gives E1,0 = 1eV E1,±1 = 5
6
eV

l = 2→ m = 0,±1,±2, gives E2,0 = 3eV E2,±1 = 17
6

eV E2,±2 = 7
3
eV

and so on.

2



4. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
x = r sin θ cosφ, z = r cos θ and hence zx = r2 cos θ sin θ(eiφ + e−iφ)/2 using the Euler relations)
the appropriate spherical harmonics can now be identified and we arrive at

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = N
r2

2

√
8π

15
(−Y2,1 + Y2,−1)e

−r/3a0 . (1)

As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is one. For the
operator Lz we note the two spherical harmonics have the same pre factor (one has -1 and the
other has +1 but the absolute value square is the same) ie they will have the same probability.
The probability to find m = 2h̄ is 0, for m = 1h̄ is 1

2
, for m = 0h̄ is 0 for m = −1h̄ is 1

2
, and for

m = −2h̄ is 0. As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is
one.

b. To calculate the expectation value < r > we need to normalise the given wave function if we
wish to do the integral. In order to achieve this in a simple way is to identify the radial wave
function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or
equal to 3. By inspection of eq (1) and 2 we find n = 3 this function has the correct exponential

and the correct power of r (r2) and hence R3,2(r) = 2
√
2

27
√
5

(
Z
3a0

)3/2 (
Zr
a0

)2
e−Zr/3a0 . We also note

that Y2,1 and Y2,−1 are normalised but the sum (−Y2,1 + Y2,−1) is not normalised. The sum has
to be changed to (− 1√

2
Y2,1 + 1√

2
Y2,−1) in order to be normalised. Note that R3,2(r) contains an

r2 term as also a e−r/3a0 term. The wave function can now be completed to the following
normalized wave function (note that we do not need to calculate the constant N as all separate
parts of ψ(r) are normalised by them selves)

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = R3,2(r)(−
1√
2
Y2,1 +

1√
2
Y2,−1)

From physics handbook page 292 you find

〈r〉 =
1

2

[
3n2 − l(l + 1)

] (a0
Z

)
=

1

2

[
3 32 − 2(2 + 1)

] (a0
1

)
=

21

2
a0 =

10.5 · 0.5292 Å = 5.56 Å.

You may also do the integral directly like this:

〈r〉 =
∫ ∞
0

∫ π

0

∫ 2π

0
dφ dθ dr r2 sin(θ) r | R3,2(r) |2 |

(
− 1√

2
Y2,1 +

1√
2
Y2,−1

)
|2 =

∫ ∞
0

dr r3 | R3,2(r) |2=
21

2
a0 = 10.5 · 0.5292 Å = 5.56 Å.

5. (a) To show that ψ+(ξ) = Aξe+ξ
2/2 solves the differential equation put it in! The first

derivative and second derivatives are (A cancels out):

dψ+(ξ)

dξ
= e+ξ

2/2+ξ2e+ξ
2/2 and

d2ψ+(ξ)

dξ2
= ξe+ξ

2/2+2ξe+ξ
2/2+ξ3e+ξ

2/2 = 3ξe+ξ
2/2+ξ3e+ξ

2/2

Now evaluate the following:

d2ψ+(ξ)

dξ2
+ (λ+ − ξ2)ψ+(ξ) = (λ+ + 3)ξe+ξ

2/2 + ξ3e+ξ
2/2 − ξ3e+ξ2/2 = (λ+ + 3)ξe+ξ

2/2 = 0
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If λ+ = −3 the desired result is reached.

The same yields for ψ−(ξ) = Bξe−ξ
2/2. The first derivative and second derivatives are (B

cancels out):

dψ−(ξ)

dξ
= e−ξ

2/2−ξ2e−ξ2/2 and
d2ψ−(ξ)

dξ2
= −ξe−ξ2/2−2ξe−ξ

2/2+ξ3e−ξ
2/2 = −3ξe−ξ

2/2+ξ3e−ξ
2/2

Now evaluate the following:

d2ψ−(ξ)

dξ2
+ (λ− − ξ2)ψ−(ξ) = (λ− − 3)ξe−ξ

2/2 + ξ3e−ξ
2/2 − ξ3e−ξ2/2 = (λ− − 3)ξe−ξ

2/2 = 0

If λ− = +3 the desired result is reached.

(b) Only one is physical acceptable ψ−(ξ) as it can be normalised. The othe function ψ+(ξ) is
not acceptable as it cannot be normalized and therefore it does not describe a particle.
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