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1. (a) 〈H〉 = 1
2
0.25 + 1

4
0.95 + 1

6
2.12 + 1

24
3.23 + 1

24
4.79 = 1.05eV.

Uncertainty is defined by: 〈∆H〉 =
√

〈H2〉 − 〈H〉2
〈H2〉 = 1

2
(0.25)2 + 1

4
(0.95)2 + 1

6
(2.12)2 + 1

24
(3.23)2 + 1

24
(4.79)2 = 2.39665 ≈ 2.40(eV)2.

〈∆H〉 =
√
3.44665− 1.052 = 1.13761 ≈ 1.14eV

(b) The expression is not unique as we only know the probabilities which are the squares of the
coefficients. In the evaluation of 〈H〉 and 〈H2〉 only the probabilities are important thats
why a different sign ± is of no importance in this calculation.

One is: Ψ(z) = 1√
2
ψ1(z) +

1
2
ψ2(z) +

1√
6
ψ3(z) +

1√
24
ψ4(z) +

1√
24
ψ5(z).

Another is: Ψ(z) = 1√
2
ψ1(z) +

1
2
ψ2(z)− 1√

6
ψ3(z) +

1√
24
ψ4(z)− 1√

24
ψ5(z).

(c) Decrease by a factor of 4, or lowered by a factor of 4. (All eigenvalues change by a factor of
4)

2. (a) An appropriate model to use is a particle in a box in 1, 2 or 3 dimensions of size L = 1
fm= 1 · 10−15m. Here a calculation of the 3 dimensional version is made. The eigenenergys
of the particle in the box in one dimension are given by:

En =
n2π2h̄2

2mL2
where n = 1, 2, 3, ...

and in three dimensions this will become:

Enx,ny ,nz
=

π2h̄2

2mL2
(n2

x + n2
y + n2

z) where nx,y,z = 1, 2, 3, ...

Use the ground state to calculate the estimate.

E1,1,1 =
3π2h̄2

2mL2
=

3π2(1.054 · 10−34)2

2 · 9.1094 · 10−31 · 1 · 10−30 · 1.6022 · 10−19
= 1.13 · 1012 eV ≈ 1 TeV

Note this is a very high energy !

(b) Another appropriate model you may use is the spherical box in 3 dimensions.

(c) Another appropriate model you may use is the harmonic oscillator in 1, 2 or 3
dimensions. This is perhaps not a really good box as the walls are not very hard as box
actually will consist of a parabola. The energy of the ground state in 3 dimensions is

E0,0,0 =
3

2
h̄ω

Now the frequence ω has to be determined. The strenght (and shape of parabola) is
determined by ω. To connect the length scale to ω we can use the an appropriate
expectation value for x. < x >= 0 cannot be used but < x2 >= (n+ 1

2
) h̄
mω

with n = 0 we
have < x2 >= 1

2
h̄

mω
. Now an estimate for < x2 >= 1

4
10−30 .

E0,0,0 =
3

2
h̄
1

2

h̄

m < x2 >
=

3(1.054 · 10−34)2

4 · 9.1094 · 10−31 · 0.25 · 10−30 · 1.6022 · 10−19
= 2.28 · 1011 eV
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Whatever model one applies the energy will be very high. In the case of the harmonic oscillator
also an estimate had to be made for ω. Also the harmonic oscillator does not have as ’hard’
walls as the walls of an infinite box. As one can argue for any of these three models an answer in
the range of 0.1 - 1 TeV is reasonable.

3. The Carbon ion has Z = 6 and hence energys En = −488.16
n2 eV. Try to find a start of the series.

The energy of λ = 207.80nm is E = hν = hc
λ
= 6.626·10−34·2.9979·108

207.80·10−9·1.6022·10−19 = 5.9663eV A similar
calculation gives the energys for the other lines in the series: 9.56395, 11.8989 and 13.4997 eV.

As the Balmer series in Hydrogen is for transitions down to level n=2 we have to go higher up
for the Carbon ion as the energys for the level n = 2 in Carbon would be far to large.

Using the fact that can assume levels are adjecent we let n be the quantum number for the lower
level and m for a level above, we have no knowledge of how n and m relate. We know however
that for the next level (higher in energy) we have n and m+ 1. One can form the following two
equations 5.9663eV=488.16( 1

n2 − 1
m2 )eV and 9.56395eV=488.16( 1

n2 − 1
(m+1)2

)eV ie we only need

two of the lines to form an appropriate set of equations. (You can use the other pairs of lines as
well to form two equations.) Subtracting one equation from the other to eliminat n you get
3.59765=488.16( 1

m2 − 1
(m+1)2

) and 1
m2 − 1

(m+1)2
= 0.007369817273025237627 solving for m you

arrive at m = 6. Now we use the result for m in 5.9663eV=488.16( 1
n2 − 1

62
)eV to solve for n and

we arrive at n = 5.

Then there is the tour of brute force ie just trial and error: If we try n=5 we have transitions
from m=6, 7, 8, 9, etc. The corresponding energys will be: 488.16( 1

52
− 1

62
)=5.97 eV, the next

one will be: 488.16( 1
52

− 1
72
)=9.56 eV, 488.16( 1

52
− 1

82
)=11.899 eV and so on. So these are down

to n=5 from level m=6, 7, 8 and 9.

4. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− h̄2

2m

d2

dx2
Ψ(x, y)− h̄2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− h̄2

2m

d2

dx2
ψx(x)−

h̄2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and one for y.
We therefore solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− h̄2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ+ k2Ψ = 0 where k2 =

2mE

h̄2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(

Ψ(−a
2
) = Ψ(a

2
) = 0

)

into
account.

A cos(−ka
2
) +B sin(−ka

2
) = 0 and A cos(

ka

2
) + B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2
) = 0 and subtracting them gives sin(ka

2
) = 0. These two

conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with
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A = 0 and we get the following solution: The normalising constant B =
√

2
a
you get from the

condition
∫ a/2
−a/2 | Ψ |2 dx = 1. The condition sin(ka

2
) = 0 gives ka

2
= π

2
∗ (even− integer). The

solution is:

ψn(x) =

√

2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 2, 4, 6, ... (1)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2
) = 0

gives ka
2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√

2

a
cos(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 3, 5, ... (2)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (3)

In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√

2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (4)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√

2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (5)

ψn(x) =
√

2
a
sin(nπx

a
+ nπ

2
) =

√

2
a

(

sin(nπx
a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)

. We see that we recover

the solution in eq (1), (2) and (3) as we let n run from 1 to ∞.

b) Now we turn to the question of parity, ie whether the wave function is odd or even under a
change of coordinates from (x, y) to (−x,−y). The one dimensional eigenfunctions in eq (1) and
(2) have a definite parity. The functions in (1) are odd whereas the functions in (2) are even. As
the eigenstates for the 2 dimensional system are formed from eq (3) ie products of functions that
are even or odd the total function itself will be either even or odd as well.

The four lowest eigenenergies are given by

En,m =
π2h̄2

2Ma2
(n2 +m2), where the 4 lowest are (n2 +m2) = 2, 5, 8, 10.

When we form the eigenstates we need to keep track of the parity of the ψn(x) and ψm(y). It is
therefore necessary to have the functions in the form like in eq (1) and (2) to identify the parity
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as odd or even. This is difficult if you try with functions like eq (5) even though it is a correct
eigenstate it is hard to identify their parity.

E1,1 = one state (n2 +m2 = 2) even * even = even

E1,2 = E2,1 = two states (n2 +m2 = 5) even * odd = odd

E2,2 = one state (n2 +m2 = 8) odd * odd = even

E1,3 = E3,1 = two states (n2 +m2 = 10) even * even = even

So of the four states only one is odd and three where even.

5. The task is to calculate the change of the difference between to energy levels (ground state E0

and first excited state E1) for a harmonic oscillator due to a perturbation H1 to the potential.

E1
1 − E1

0 = E1
1 + 〈1 | H1 | 1〉 −

(

E1
0 + 〈0 | H1 | 0〉

)

The two harmonic oscillator eigenfunctions that are of interest are :

ψ0(x) =

√

α√
π
e−

1

2
α2x2

and ψ1(x) =

√

α

2
√
π
2αx e−

1

2
α2x2

where α =

√

mω

h̄

The first integral to calculate (use integration by parts) will be for the change of the ground
state energy

〈0 | H1 | 0〉 =
∫

ψ∗
0(x)H

1ψ0(x)dx =
∫

α√
π
Ax4 e−α2x2

dx = [αx = y] =
A

α4
√
π

∫

y4 e−y2dy

where the integral taken separatelly will be
∫ ∞

−∞
y4 e−y2dy = [−y

3

2
e−y2 ]∞−∞ +

∫ ∞

−∞

3y2

2
e−y2 = [−3y1

4
e−y2 ]∞−∞ +

∫ ∞

−∞

3

4
e−y2 =

3

4

√
π

Hence the shift of the ground state energy will be

〈0 | H1 | 0〉 = A

α4
√
π

3

4

√
π =

3A

4α4
=

3A

4

(

h̄

mω

)2

The second integral to calculate (use integration by parts) will be for the change of the energy of
the lowest excited state.

〈1 | H1 | 1〉 =
∫

ψ∗
1(x)H

1ψ1(x)dx =
∫

α

2
√
π
Ax4 4α2x2e−α2x2

dx = [αx = y] =
4A

α4
√
π

∫

y6 e−y2dy

where the integral taken separatelly will be
∫ ∞

−∞
y6 e−y2dy = [−y

5

2
e−y2 ]∞−∞ +

∫ ∞

−∞

5y4

2
e−y2 = [−5y3

4
e−y2 ]∞−∞ +

∫ ∞

−∞

15y2

4
e−y2 =

= [−15y1

8
e−y2 ]∞−∞ +

∫ ∞

−∞

15

8
e−y2 =

15

8

√
π

Hence the shift of the energy of the lowest excited state will be

〈1 | H1 | 1〉 = 4A

α4
√
π

15

8

√
π =

15A

8α4
=

15A

8

(

h̄

mω

)2

The difference in the perturbed energys will be

E1
1 − E1

0 =
3

2
h̄ω +

15A

8α4
− (

1

2
h̄ω +

3A

4α4
) = h̄ω +

9A

8α4
= h̄ω +

9A

8

(

h̄

mω

)2

Note that the constant A has dimension.
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