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1. Same as problem 4.4 in Bransden & Joachain. In the region where the potential is zero (x < 0)
the solutions are of the traveling wave form ¢*® and e="*  where k? = 2mE/h*. A plane wave
Y(x) = Ae!*=+! describes a particle moving from z = —oo towards z = co. The probability
current associated with this plane wave is
j= ﬁ | A |2 (e—ik:p%eﬂkx _ eﬂ'ka:a%ﬂe—ikm) :| A |2 %k‘ :| A |2 v
A plane wave ¢)(z) = Be!(=F*=%) describes a particle moving the opposite direction from z = oo
towards x = —oo. The probability current associated with this plane wave is
jZQLmi’B‘2(eﬂkz%e_ikm—e_ikma%ﬁeﬂkm):—‘BP%/CZ—‘BPU

(a) Solution for the region x > 0 where the potential is Vj = 3.5eV. The potential step is larger
than the kinetic energy 2.0 eV of the incident beam. The particle may therefore not enter
this region classically. It will be totally reflected. In quantum mechanics we perform the
following calculation: The two solutions for the two regions are:

¥(z) = Aek® + Be=**  for 1 <0 where k?>=2mE/h?
T | Ce 4 De " for x>0 where x?=2m(Vy— E)/h*

we can put C' = 0 as this part of the solution would diverge, and is hence not physical, as x
approaches co. At x = 0 both the wavefunction and its derivative have to be continous
functions. The derivative is:

o¥(x) [ Aike™™ — Bike ™
or —Dkge™ " *

At x = 0 we arrive at the following two equations:
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We can now calculate the coefficient of reflection, R, the ratio between the reflected flux jg
and the incoming flux j4. The coeficients represent the following amplitudes: A is the
incident beam, B is the reflected beam and C' is the transmitted beam. The associated
probability currents are denoted j4,jp and jo. Conservation yields j4 = jp + jo. Hence we
can define the coeficient of reflection as the fraction of reflected flux R = % and the

licl

coeficient of transmission as 17" = Al

_ lisl _ B% _
{R=fi=ta=1
This is easily seen from the ratio B/A being the ratio of two complex number where one is

the complex conjugate of the other and therefore having the same absolute value.
Imidiately follows that 7" = 0 as the currents have to be conserved.



(b+c) Solution for the region x > 0 where the potential is V = 3.5eV. The potential step is
smaller than the kinetic energy 5.0eV (or 7.0eV) of the incident beam. The particle may
therefore enter this region classically. It will however lose some of its kinetic energy. In
quantum mechanics there is a probabillity for the wave to be reflected as well. The two
solutions for the two regions are:

() = Ae*® + Be=**  for 1 <0 where k*=2mE/h’
| Ce*T 4 Dem** for x>0 where k% =2m(E —V;)/h?

whe can put D = 0 as there cannot be an incident beam from x = co. At z = 0 both the
wavefunction and its derivative have to be continous functions. The derivative is:

oV(z) [ Aike™™™ — Bike i
o - Cik/eik’:v

At x = 0 we arrive at the following two equations:

c _ 2 C _ 2VE
A+B=C solving for AR solving for 4 VEHET
Ak — Bk = CK & B _ k- & B JE-JET:
AT kel A= VErVET

The coeficients represent the following amplitudes: A is the incident beam, B is the
reflected beam and C' is the transmitted beam. The associated probability currents are
denoted j4,jp and jo. Conservation yields j4 = jp + jo. Hence we can define the
coeficient of reflection as the fraction of reflected flux R = % and the coeficient of

transmission as 7' = B—jl

R — lisl _ B% (@)L(@-m) (m F) = 0.085393

E=5.0 lgal = A%k A VERVETy V50415
' _ licl _ ¢k _ (C\* VE=Vh _ WE E—V _
T = el = Gk () VB = () VBT - (2450 )" VIS — 0.914607

The last result could also be reached by T'+ R = 1.

R:@_B%_(B) (\F*\/W) («/ﬁf) — 0.029437

E=170 lgal = A%k A4 \F\P/E v VT.0+/35
_ el _ % _ (C\VE=, _ 2 VE=Vo __
T'=Ta0= "% = (A) VB = (ﬁ+¢ﬁ> Vo <F+F) 7_0 = 0.970563

The last result could also be reached by 7'+ R = 1.

(a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in
terms of eigenfunctions (here particle in a box). The eigenfunctions are (PH)

Un(z) = \/> sin(™%). We can directly conclude that the given wave function consists of
n =1, n =25 and n = 7 functions, we can write:

e = A (52) 4 L (5] (1)

+ + sin | —
\/2a 2V2-a V2 8a

a
A 1 1
5%(% 0) + ﬁ%(ﬂf, 0) + Ziﬂ?(% 0)

As all three eigenfunctions are orthonormal the normalisation integral reduces to
2
A+ 14 L =1 and hence A = ¥3(~ 1.8028).
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(b) The wave function contains only n =1, n=5and n =7 eigenfunctions and therefore the
only possible outcome of an energy nleassurenlent are E1 “5 with probab1hty A %
and Fs = ;Lm2225 with probablhty and E; =
The average energy is given by

22 22 2.2
<E>=PEi+3Es+ B =25 (3 +3- 2545549 =42 L5, =7 10,

(¢) The time dependent solution is given by \I/(a:, t) = anl cnwn( e iEnt/m and hence

2¢h7r2t 49h71' t

U (z,t) \/71?1 (z,0)e i + 7%(1' ,0)e" zma? + %(37 0)e™" 2ma?

3. (a) zhth sinwt = ihw coswt = —ihw?sinwt  YES
(b) —ihZC(14 22) = —zhC(O +2z) NO
(c) zhaazz (Che™* + Cre™™*) = —ihik L (Cre™** — Coe™™*) = —ihk?(Cre™* + Coe™™*)  YES
(d) =55:0e™ = —50(=3)e™ w< ) YES
(e) $(22— %)26_%22 =7 This has to be done in some steps. Start by doing this derivative
first: —g—;ze’%zz = —%(6’522 22e2%) = —(—ze 3% — 2z¢737 + ZBe27) =
3zem3% — e
Now you go back to the start: S (2% — 25)ze 27" = €(23e 7% 4 32e77%" — 23e737) =
Q(+326_%Z2) =x ¢¥(z) YES
(f) S(22— e 3*" = C(2227 — 2(—ze37")) = €(22e 737 — (—e 27 4 2%e737)) =
Ce 2 x 1p(z) YES
4. A measurement of the spin in the direction n = sin(%)é, + cos(§)é. = %éy + %éz. The spin

operator Sy, is

1 1 h 1 —
Sp=—=Sy+ =S =—= | -
Y M(Z )

The eigenvalue equation is

sty (! 3)(0)

We find the eigenvalues from
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The eigenspinors to S,, corresponding to the +g we get from

wals ) ()= (3)

a b —1
— ——=aoa(V2—1)=—ib let b=1 and hence a =
vasva ooy Vi
This gives the unnormalised spinor
N 1 —
( V2-1 ) and after normalisation we have Y5, = ——— ( v2-1 )
1 22+v2) \ 1



Now we can expand the initial eigenspinor y, in these eigenspinors to S,,, the second
eigenspinor you can get from orthogonality to the first one.

(0)=2 5 (T ) p ()

The coefficients are subjected to the normalisation condition |A|? 4+ |B|? = 1. The coefficient A
can be obtained by multiplying the previous equation from the left with x; .

2(21+\/§) <_\/§i—1 1) ) ( (1) ) - ﬁz—l' 2(21+\/§)

The probability (to get +2) is given by |AJ%.

A:

‘A’2:3+2\/§

— 0.8535533906
44+ 2v/2

and (to get —2) for |BJ%.
= 0.1464466094
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To find the probability for +2 in the z-direction for the up state of S, express the state in the
2

eigenspinors to S,.

1 - i 1 1 1 0
Xﬁ+ = T \/1571 = - : 0 _I_ N 1
2(2 + /2) V2-1 22+ 2) 202+ /2)
The probability is given by the square of the coefficient:

2
= (0.8535533906

7 1
|_ﬂ—1‘ 22+ v2)

. Molekylens energinivaer, pga vibrationer och rotation ges av E,; = (n + 3)hw + Z—jl (I+1) Vid
dipolovergang andras [ med en enhet Al = +1.

I) Om vibrationstillstandet ej dndras (An = 0), ser man stralning med féljande energier
PU+1)(+2) = Bl +1) =21 +1),1=0,1,2,3, och detta ger 2 28 382 402

IT) Om vibrationstillstandet &ndras en enhet An = —1 (emission), ser man tva serier, dar
avstandet mellan energinivaerna for varje serie ar lika stort. Ena serien har An = —1, Al = —1:
hw + hTQ, hw + 2?, hw + 37%2, hw + 4’%2, ... Den andra serien har An = —1, Al = +1:

hw — h—;,hw — 27172,7‘1(,0 - 3h—;,hw — 47172,

Det ser alltsa ut som om det ’saknas’ en topp med energin hw.
Avstandet mellan maxima svarar mot AE = h—; = heAX"! ur data fas
AN = w = 20.67cm ™! vidare ar [ = pR? = 2"CL och darmed

myg+mg;
_ h _
R = \/ faps=; = 1.30A.



