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1. Same as problem 4.4 in Bransden & Joachain. In the region where the potential is zero (x < 0)
the solutions are of the traveling wave form eikx and e−ikx, where k2 = 2mE/h̄2. A plane wave
ψ(x) = Aei(kx−ωt) describes a particle moving from x = −∞ towards x = ∞. The probability
current associated with this plane wave is
j = h̄

2mi
| A |2 (e−ikx ∂

∂x
e+ikx − e+ikx ∂

∂x
e−ikx) =| A |2 h̄

m
k =| A |2 v

A plane wave ψ(x) = Bei(−kx−ωt) describes a particle moving the opposite direction from x = ∞
towards x = −∞. The probability current associated with this plane wave is
j = h̄

2mi
| B |2 (e+ikx ∂

∂x
e−ikx − e−ikx ∂

∂x
e+ikx) = − | B |2 h̄

m
k = − | B |2 v

(a) Solution for the region x > 0 where the potential is V0 = 3.5eV. The potential step is larger
than the kinetic energy 2.0 eV of the incident beam. The particle may therefore not enter
this region classically. It will be totally reflected. In quantum mechanics we perform the
following calculation: The two solutions for the two regions are:

Ψ(x) =

{

Aeikx + Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceκx +De−κx for x > 0 where κ2 = 2m(V0 − E)/h̄2

we can put C = 0 as this part of the solution would diverge, and is hence not physical, as x
approaches ∞. At x = 0 both the wavefunction and its derivative have to be continous
functions. The derivative is:

∂Ψ(x)

∂x
=

{

Aikeikx − Bike−ikx

−Dκe−κx

At x = 0 we arrive at the following two equations:

{

A+B = D
iAk − iBk = −Dκ solving for







D
A
= 2k

k+κ

B
A
= k−iκ

k+iκ

solving for















D
A
= 2

1+i
√

V0/E−1

B
A
=

1−i
√

V0/E−1

1+i
√

V0/E−1

We can now calculate the coefficient of reflection, R, the ratio between the reflected flux jB
and the incoming flux jA. The coeficients represent the following amplitudes: A is the
incident beam, B is the reflected beam and C is the transmitted beam. The associated
probability currents are denoted jA, jB and jC . Conservation yields jA = jB + jC . Hence we
can define the coeficient of reflection as the fraction of reflected flux R = |jB |

|jA| and the

coeficient of transmission as T = |jC |
|jA|

{

R = |jB |
|jA| =

B2k
A2k

= 1

This is easily seen from the ratio B/A being the ratio of two complex number where one is
the complex conjugate of the other and therefore having the same absolute value.
Imidiately follows that T = 0 as the currents have to be conserved.
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(b+c) Solution for the region x > 0 where the potential is V0 = 3.5eV. The potential step is
smaller than the kinetic energy 5.0eV (or 7.0eV) of the incident beam. The particle may
therefore enter this region classically. It will however lose some of its kinetic energy. In
quantum mechanics there is a probabillity for the wave to be reflected as well. The two
solutions for the two regions are:

Ψ(x) =

{

Aeikx +Be−ikx for x < 0 where k2 = 2mE/h̄2

Ceik
′x +De−ik′x for x > 0 where k′2 = 2m(E − V0)/h̄

2

whe can put D = 0 as there cannot be an incident beam from x = ∞. At x = 0 both the
wavefunction and its derivative have to be continous functions. The derivative is:

∂Ψ(x)

∂x
=

{

Aikeikx − Bike−ikx

Cik′eik
′x

At x = 0 we arrive at the following two equations:

{

A+ B = C
Ak −Bk = Ck′

solving for







C
A
= 2k

k+k′

B
A
= k−k′

k+k′

solving for











C
A
= 2

√
E√

E+
√
E−V0

B
A
=

√
E−

√
E−V0√

E+
√
E−V0

The coeficients represent the following amplitudes: A is the incident beam, B is the
reflected beam and C is the transmitted beam. The associated probability currents are
denoted jA, jB and jC . Conservation yields jA = jB + jC . Hence we can define the
coeficient of reflection as the fraction of reflected flux R = |jB |

|jA| and the coeficient of

transmission as T = |jC |
|jA|

E = 5.0











R = |jB |
|jA| =

B2k
A2k

=
(

B
A

)2
=
(√

E−
√
E−V0√

E+
√
E−V0

)2
=
(√

5.0−
√
1.5√

5.0+
√
1.5

)2
= 0.085393

T = |jC |
|jA| =

C2k′

A2k
=
(

C
A

)2 √
E−V0√
E

=
(

2
√
E√

E+
√
E−V0

)2 √
E−V0√
E

=
(

2
√
5.0√

5.0+
√
1.5

)2 √
1.5√
5.0

= 0.914607

The last result could also be reached by T +R = 1.

E = 7.0











R = |jB |
|jA| =

B2k
A2k

=
(

B
A

)2
=
(√

E−
√
E−V0√

E+
√
E−V0

)2
=
(√

7.0−
√
3.5√

7.0+
√
3.5

)2
= 0.029437

T = |jC |
|jA| =

C2k′

A2k
=
(

C
A

)2 √
E−V0√
E

=
(

2
√
E√

E+
√
E−V0

)2 √
E−V0√
E

=
(

2
√
7.0√

7.0+
√
3.5

)2 √
3.5√
7.0

= 0.970563

The last result could also be reached by T +R = 1.

2. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in
terms of eigenfunctions (here particle in a box). The eigenfunctions are (PH)

ψn(x) =
√

2
a
sin(nπx

a
). We can directly conclude that the given wave function consists of

n = 1, n = 5 and n = 7 functions, we can write:

ψ(x, 0) =
A
√
2√

2a
sin

(

πx

a

)

+

√
2

2
√
2 · a

sin
(

5πx

a

)

+

√
2√

2 · 8a
sin

(

7πx

a

)

=

A

2
ψ1(x, 0) +

1√
8
ψ5(x, 0) +

1

4
ψ7(x, 0)

As all three eigenfunctions are orthonormal the normalisation integral reduces to
A2

4
+ 1

8
+ 1

16
= 1 and hence A =

√
13
2
(≈ 1.8028).
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(b) The wave function contains only n = 1, n = 5 and n = 7 eigenfunctions and therefore the

only possible outcome of an energy meassurement are E1 =
h̄2π2

2ma2
with probability A2

4
= 13

16

and E5 =
h̄2π2

2ma2
25 with probability 1

8
and E7 =

h̄2π2

2ma2
49 with probability 1

16
.

The average energy is given by
< E >= 13

16
E1 +

1
8
E5 +

1
16
E7 =

h̄2π2

2ma2
(13
16

+ 1
8
· 25 + 1

16
· 49) = 112

16
· h̄2π2

2ma2
= 7 · h̄2π2

2ma2

(c) The time dependent solution is given by Ψ(x, t) =
∑∞

n=1 cnψn(x)e
−iEnt/h̄ and hence

Ψ(x, t) =

√

13

16
ψ1(x, 0)e

−i h̄π
2
t

2ma2 +
1√
8
ψ5(x, 0)e

−i 25h̄π
2
t

2ma2 +
1

4
ψ7(x, 0)e

−i 49h̄π
2
t

2ma2

3. (a) ih̄ ∂2

∂t2
sinωt = ih̄ω ∂

∂t
cosωt = −ih̄ω2 sinωt YES

(b) −ih̄ ∂
∂z
C(1 + z2) = −ih̄C(0 + 2z) NO

(c) −ih̄ ∂2

∂z2
(C1e

ikz + C2e
−ikz) = −ih̄ik ∂

∂z
(C1e

ikz − C2e
−ikz) = −ih̄k2(C1e

ikz + C2e
−ikz) YES

(d) − h̄
2

∂
∂z
Ce−3z = − h̄

2
C(−3)e−3z ∝ ψ(z) YES

(e) C
2
(z2 − ∂2

∂z2
)ze−

1

2
z2 =? This has to be done in some steps. Start by doing this derivative

first: − ∂2

∂z2
ze−

1

2
z2 = − ∂

∂z
(e−

1

2
z2 − z2e−

1

2
z2) = −(−ze− 1

2
z2 − 2ze−

1

2
z2 + z3e−

1

2
z2) =

3ze−
1

2
z2 − z3e−

1

2
z2 .

Now you go back to the start: C
2
(z2 − ∂2

∂z2
)ze−

1

2
z2 = C

2
(z3e−

1

2
z2 + 3ze−

1

2
z2 − z3e−

1

2
z2) =

C
2
(+3ze−

1

2
z2) = ∝ ψ(z) YES

(f) C
2
(z2 − ∂2

∂z2
)e−

1

2
z2 = C

2
(z2e−

1

2
z2 − ∂

∂z
(−ze− 1

2
z2)) = C

2
(z2e−

1

2
z2 − (−e− 1

2
z2 + z2e−

1

2
z2)) =

C
2
e−

1

2
z2 ∝ ψ(z) YES

4. A measurement of the spin in the direction n̂ = sin(π
4
)êy + cos(π

4
)êz = 1√

2
êy +

1√
2
êz. The spin

operator Sn̂ is

Sn̂ =
1√
2
Sy +

1√
2
Sz =

h̄

2
√
2

(

1 −i
i −1

)

The eigenvalue equation is

Sn̂χ = λχ⇔ h̄

2
√
2

(

1 −i
i −1

)(

a
b

)

= λ

(

a
b

)

(1)

We find the eigenvalues from
∣

∣

∣

∣

∣

h̄
2
√
2
− λ −i h̄

2
√
2

i h̄
2
√
2

− h̄
2
√
2
− λ

∣

∣

∣

∣

∣

= 0 ⇒ λ = ± h̄
2

The eigenspinors to Sn corresponding to the + h̄
2
we get from

h̄

2
√
2

(

1 −i
i −1

)(

a
b

)

= +
h̄

2

(

a
b

)

a√
2
− ib√

2
= a⇔ a(

√
2− 1) = −ib let b = 1 and hence a =

−i√
2− 1

This gives the unnormalised spinor
(

− i√
2−1

1

)

and after normalisation we have χn̂+ =
1

√

2(2 +
√
2)

(

− i√
2−1

1

)
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Now we can expand the initial eigenspinor χ+ in these eigenspinors to Sn, the second
eigenspinor you can get from orthogonality to the first one.

(

1
0

)

= A
1

√

2(2 +
√
2)

(

− i√
2−1

1

)

+ B
1

√

2(2 +
√
2)

(

1
−i√
2−1

)

The coefficients are subjected to the normalisation condition |A|2 + |B|2 = 1. The coefficient A
can be obtained by multiplying the previous equation from the left with χ∗

n̂+.

A =
1

√

2(2 +
√
2)

(

− i√
2− 1

1

)

∗
(

1
0

)

= − i√
2− 1

· 1
√

2(2 +
√
2)

The probability (to get + h̄
2
) is given by |A|2.

|A|2 = 3 + 2
√
2

4 + 2
√
2
= 0.8535533906

and (to get − h̄
2
) for |B|2.

|B|2 = 1

4 + 2
√
2
= 0.1464466094

To find the probability for + h̄
2
in the z-direction for the up state of Sn express the state in the

eigenspinors to Sz.

χn̂+ =
1

√

2(2 +
√
2)

(

− i√
2−1

1

)

= − i√
2− 1

· 1
√

2(2 +
√
2)

(

1
0

)

+
1

√

2(2 +
√
2)

(

0
1

)

The probability is given by the square of the coefficient:

∣

∣

∣

∣

∣

∣

− i√
2− 1

· 1
√

2(2 +
√
2)

∣

∣

∣

∣

∣

∣

2

= 0.8535533906

5. Molekylens energiniv̊aer, pga vibrationer och rotation ges av En,l = (n+ 1
2
)h̄ω + h̄2

2I
l(l + 1) Vid

dipolöverg̊ang ändras l med en enhet ∆l = ±1.

I) Om vibrationstillst̊andet ej ändras (∆n = 0), ser man str̊alning med följande energier
h̄2

2I
(l + 1)(l + 2)− h̄2

2I
l(l + 1) = h̄2

I
(l + 1), l = 0, 1, 2, 3, och detta ger h̄2

I
, 2 h̄2

I
, 3 h̄2

I
, 4 h̄2

I
, ...

II) Om vibrationstillst̊andet ändras en enhet ∆n = −1 (emission), ser man tv̊a serier, där
avst̊andet mellan energiniv̊aerna för varje serie är lika stort. Ena serien har ∆n = −1,∆l = −1:
h̄ω + h̄2

I
, h̄ω + 2 h̄2

I
, h̄ω + 3 h̄2

I
, h̄ω + 4 h̄2

I
, ... Den andra serien har ∆n = −1,∆l = +1:

h̄ω − h̄2

I
, h̄ω − 2 h̄2

I
, h̄ω − 3 h̄2

I
, h̄ω − 4 h̄2

I
, ...

Det ser allts̊a ut som om det ’saknas’ en topp med energin h̄ω.

Avst̊andet mellan maxima svarar mot ∆E = h̄2

I
= hc∆λ−1 ur data f̊as

∆λ−1 = 2968.7−2824.0
7

= 20.67cm−1 vidare är I = µR2 = mHmCl

mH+mCl

och därmed

R =
√

h
4π2c∆λ−1µ

= 1.30Å.
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