LULEA UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics F0047T

Examination date: 2012-09-01

1. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(x)}{d x^{2}}+V(x) u(x)=E u(x)
$$

with $V(x)$ zero everywhere. Thus, the eigenvalue equation reads

$$
\frac{d^{2} u(x)}{d x^{2}}+k^{2} u(x)=0
$$

where $k^{2}=2 m E / \hbar^{2}$. The eigenfunctions are given by the plane waves $e^{i k x}$ and $e^{-i k x}$, or linear combinations of these, as e.g. $\sin k x$ and $\cos k x$.
(a) The wave function of the particle at $t=0$ is given by

$$
\psi(x, 0)=\cos ^{3}(k x)+\sin ^{5}(k x)
$$

This is not an eigenfunction in itself but it can be written as using the Euler relations

$$
\begin{array}{r}
\psi(x, 0)=\left(\frac{e^{i k x}+e^{-i k x}}{2}\right)^{3}+\psi(x, 0)=\left(\frac{e^{i k x}-e^{-i k x}}{2 i}\right)^{5}= \\
\frac{1}{8}\left(e^{i 3 k x}+3 e^{i k x}+3 e^{-i k x}+e^{-i 3 k x}\right)+ \\
\frac{1}{32 i}\left(e^{i 5 k x}-5 e^{i 3 k x}+10 e^{i k x}-10 e^{-i k x}+5 e^{-i 3 k x}-e^{-i 5 k x}\right)= \\
\frac{3}{4} \cos (k x)+\frac{1}{4} \cos (3 k x)+\frac{1}{16} \sin (5 k x)-\frac{5}{16} \sin (3 k x)+\frac{10}{16} \sin (k x) \tag{4}
\end{array}
$$

Thus, $\psi(x, 0)$ can be written as a superposition of plane waves with three different values of $k_{1}=k, k_{2}=3 k$ and $k_{3}=5 k$
(b) The energy of a plane wave $e^{i k x}$ is given by $E=\hbar^{2} k^{2} / 2 m$. Thus, the energy of $e^{i k_{1} x}$ (or $e^{-i k_{1} x}$) is $E_{1}=\hbar^{2} k^{2} / 2 m$ and the energy of $e^{i k_{2} x}\left(\right.$ or $\left.e^{-i k_{2} x}\right)$ is $E_{2}=\hbar^{2} k_{2}^{2} / 2 m=9 \hbar^{2} k^{2} / 2 m$. and the energy of $e^{i k_{3} x}$ (or $e^{-i k_{3} x}$) is $E_{3}=\hbar^{2} k_{2}^{2} / 2 m=25 \hbar^{2} k^{2} / 2 m$.
(c) The function $u(x)=e^{i k x}$ is a solution to the the time-independent Schrödinger equation. The corresponding solutions to the time-dependent Schrödinger equation are given by $u(x) T(t)$, with $T(t)=e^{-i E t / \hbar}$. Therefore, $u(x) T(t)=e^{i(k x-E t / \hbar)}$. A sum of solutions of this form is also a solution, since the Schrödinger equation is linear. This means that if $\psi(x, 0)$ is given by equation (4), then the time dependent solution is given by

$$
\begin{array}{r}
\psi(x, t)=\frac{1}{8}\left(e^{i 3 k x}+e^{-i 3 k x}\right) e^{-i E_{2} t / \hbar}+\frac{3}{8}\left(e^{i k x}+e^{-i k x}\right) e^{-i E_{1} t / \hbar}+ \\
\frac{1}{32 i}\left(e^{i 5 k x}-e^{-i 5 k x}\right) e^{-i E_{3} t / \hbar}-\frac{5}{32 i}\left(e^{i 3 k x}-e^{-i 3 k x}\right) e^{-i E_{2} t / \hbar}+\frac{10}{32 i}\left(e^{i k x}-e^{-i k x}\right) e^{-i E_{1} t / \hbar}= \tag{6}
\end{array}
$$

where

$$
E_{1}=\frac{\hbar^{2} k^{2}}{2 m} \quad \text { and } \quad E_{2}=\frac{9 \hbar^{2} k^{2}}{2 m} \quad \text { and } \quad E_{3}=\frac{25 \hbar^{2} k^{2}}{2 m}
$$

2. (a) The parity of a hydrogen eigenfunction $\psi_{n l m_{l}}(\mathbf{r})$ is given by $(-1)^{l}$. The given wave function $\Psi(\mathbf{r})$ is a mixture of eigenfunctions of different parity. Hence $\Psi(\mathbf{r})$ cannot have a definite parity.
(b) The probability is given by the absolute square of the coefficients. The probabilities are (in order) $\frac{4}{15}, \frac{9}{15}, \frac{1}{15}, \frac{1}{15}$. as a check they sum up to 1 as they should do.
(c) The energy of a single state is given by: $E_{n}=-\frac{13.56}{n^{2}} \mathrm{eV}$. The expectation value is given by $<E>=\frac{4}{15}\left(-\frac{13.56}{1^{2}}\right)+\frac{9}{15}\left(-\frac{13.56}{2^{2}}\right)+\frac{1}{15}\left(-\frac{13.56}{3^{2}}\right)+\frac{1}{15}\left(-\frac{13.56}{3^{2}}\right)=-13.56\left(\frac{4}{15}+\frac{9}{60}+\frac{1}{135}+\frac{1}{135}\right)=$ $-5.851 \mathrm{eV}$
The operator \mathbf{L}^{2} has eigenvalues $\hbar^{2} l(l+1)$. The expectation value is given by $<\mathbf{L}^{\mathbf{2}}>=\frac{4}{15} \cdot 0+\frac{9}{15} \cdot 0+\frac{1}{15}\left(\hbar^{2} 1(1+1)\right)+\frac{1}{15}\left(\hbar^{2} 2(2+1)\right)=\frac{8}{15} \hbar^{2}$
The operator L_{z} has eigenvalues $\hbar m_{l}$. The expectation value is given by $<L_{z}>=\frac{4}{15} \cdot 0+\frac{9}{15} \cdot 0+\frac{1}{15} \cdot 0+\frac{1}{15}(\hbar 2)=\frac{2}{15} \hbar$
3. Hydrogenic atoms have eigenfunctions $\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \varphi)$. Using the Collection of FORMULAE we find

$$
\begin{aligned}
& \psi_{100}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-Z r / a_{0}} \\
& \psi_{200}(\boldsymbol{r})=\left(\frac{Z^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \\
& \psi_{210}(\boldsymbol{r})=\left(\frac{Z^{3}}{32 \pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{a_{0}} \cos \theta e^{-Z r / 2 a_{0}} \\
& \psi_{21 \pm 1}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{8 a_{0}} \sin \theta e^{ \pm i \varphi} e^{-Z r / 2 a_{0}}
\end{aligned}
$$

where a_{0} is the Bohr radius. The β-decay instantaneously changes $Z=1 \rightarrow Z=2$. According to the expansion theorem, it is possible to express the wave function $u_{i}(\boldsymbol{r})$ before the decay as a linear combination of eigenfunctions $v_{j}(\boldsymbol{r})$ after the decay as

$$
u_{i}(\boldsymbol{r})=\sum_{j} a_{j} v_{j}(\boldsymbol{r})
$$

where

$$
a_{j}=\int v_{j}^{*}(\boldsymbol{r}) u_{i}(\boldsymbol{r}) d^{3} r .
$$

The probability to find the electron in state j is given by $\left|a_{j}\right|^{2}$.
(a) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{200}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}}\left(1-\frac{2 r}{2 a_{0}}\right) e^{-2 r / 2 a_{0}} 4 \pi r^{2} d r \\
& =\frac{4}{a_{0}^{3}} \int_{0}^{\infty} e^{-2 r / a_{0}}\left(r^{2}-\frac{r^{3}}{a_{0}}\right) d r=\frac{4}{a_{0}^{3}}\left[2\left(\frac{a_{0}}{2}\right)^{3}-\frac{6}{a_{0}}\left(\frac{a_{0}}{2}\right)^{4}\right]=-\frac{1}{2} .
\end{aligned}
$$

Thus, the probability is $1 / 4=0.25$.
(b) For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{210}(Z=2)$ the θ-integral is

$$
\int_{0}^{\pi} \cos \theta \sin \theta d \theta=\frac{1}{2} \int_{0}^{\pi} \sin 2 \theta d \theta=\left[-\frac{\cos 2 \theta}{4}\right]_{0}^{\pi}=0 .
$$

For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{21 \pm 1}(Z=2)$ the φ-integral is

$$
\int_{0}^{2 \pi} e^{ \pm i \varphi} d \varphi=0
$$

Thus, the probability to find the electron in a 2 p state is zero.
(c) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{100}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}} e^{-2 r / a_{0}} 4 \pi r^{2} d r=\frac{8 \sqrt{2}}{a_{0}^{3}} \int_{0}^{\infty} e^{-3 r / a_{0}} r^{2} d r \\
& =\frac{8 \sqrt{2}}{a_{0}^{3}} \frac{a_{0}^{3}}{3^{3}} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{8 \sqrt{2}}{27} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{8 \sqrt{2}}{27} \int_{0}^{\infty} 2 e^{-x} d x=\frac{16 \sqrt{2}}{27}
\end{aligned}
$$

Thus, the probability is $512 / 729 \approx 0.70233$.
(The probability to find the electron in $\psi_{100}(Z=2)$ is $512 / 729=0.702$. Therefore, the electron is found with 95% probability in one of the states 1 s or 2 s .)
(d) No l has to be less than n.
4. (a) i. $\hat{\Pi} C\left(\sin \left(\frac{\pi x}{L}\right)+\sin \left(\frac{3 \pi x}{L}\right)\right)=C\left(\sin \left(\frac{-\pi x}{L}\right)+\sin \left(\frac{-3 \pi x}{L}\right)\right)=-C\left(\sin \left(\frac{\pi x}{L}\right)+\sin \left(\frac{3 \pi x}{L}\right)\right)$, the eigenvalue is -1
ii. $\hat{\Pi} C e^{-a \sqrt{x^{2}+y^{2}+z^{2}}}=C C e^{-a \sqrt{(-x)^{2}+(-y)^{2}+(-z)^{2}}}=C e^{-a \sqrt{x^{2}+y^{2}+z^{2}}}$, the eigenvalue is +1
iii. $\hat{\Pi} C f(r)\left(\cos (\theta)+\cos ^{3}(\theta)\right) e^{i \phi}=C f(r)\left(\cos (\pi-\theta)+\cos ^{3}(\pi-\theta)\right) e^{i(\phi+\pi)}=$ $C f(r)\left(-\cos (\theta)+-\cos ^{3}(\theta)\right)\left(-e^{i \phi}\right)=C f(r)\left(\cos (\theta)+\cos ^{3}(\theta)\right) e^{i \phi}$, the eigenvalue is $+1$
(b) i. $\hat{\Pi}\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)=+2 \psi_{+}(x, y, z)+-3 \psi_{-}(x, y, z) \neq$ $\lambda\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)$, not an eigenfunction.
ii. $\hat{\Pi}^{2}\left(2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)\right)=\hat{\Pi}\left(+2 \psi_{+}(x, y, z)+-3 \psi_{-}(x, y, z)\right)=$ $2 \psi_{+}(x, y, z)+3 \psi_{-}(x, y, z)$, an eigenfunction with eigenvalue +1 .
iii. $\Pi e^{-i k x}=e^{+i k x} \neq e^{-i k x}$ not an eigenfunction and neither is $e^{i k x}$. We can however form linear combinations that have parity. The function $e^{i k x}-e^{-i k x}$ has parity $\hat{\Pi} e^{+i k x}-e^{-i k x}=e^{-i k x}-e^{+i k x}=-1\left(e^{+i k x}-e^{-i k x}\right)$ with eigenvalue -1. The function $e^{i k x}+e^{-i k x}$ has parity $\hat{\Pi} e^{+i k x}+e^{-i k x}=e^{-i k x}+e^{+i k x}=+1\left(e^{+i k x}+e^{-i k x}\right)$ with eigenvalue +1 .
5. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in one dimesion is adequate). The width of the well is a.

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \text { and the eigenenergys are } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \quad \text { where } \quad n=1,2,3, \ldots
$$

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about separation of variables is needed to justify the structure of the solution)
$\Psi_{n, m, l}(x, y)=\psi_{n}(x) \cdot \psi_{m}(y) \cdot \psi_{l}(z)$ and eigenenergys $E_{n, m}=E_{n}+E_{m}+E_{l}$ where the indecies are $n=1,2,3, . ., m=1,2,3, .$. and $l=1,2,3, .$.
a) The eigenfunctions inside the box are (note the sidelength is $a / 2$ for one of the sides)
$\Psi_{n, m, l}(x, y, z)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \cdot \sqrt{\frac{2}{a}} \sin \frac{m \pi y}{a} \cdot \sqrt{\frac{4}{a}} \sin \frac{l \pi 2 z}{a}$ where $n=1,2,3, . ., m=1,2,3, .$. and $l=1,2,3, .$.
The eigenfunctions outside the box are $\Psi_{n, m, l}(x, y, z)=0$
b) The seven lowest eigenenergys are (note the 4 associated to the quantum number l this is due to that the length of the box along the z direction is only half of the other two that are of equal length):
$E_{n, m, l}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n^{2}+m^{2}+4 l^{2}\right), \quad$ where the 7 lowest are $\left(n^{2}+m^{2}+4 l^{2}\right)=6,9,12,14,18$, and 21.
c) The seven lowest eigenenergys have degeneracys (different ways to choose n, m, l to form the same energy) (either one, two or four) as follows:

$$
\begin{gathered}
E_{1,1,1}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=6\right) \\
E_{1,2,1}=E_{2,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=9\right) \\
E_{2,2,1}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=12\right) \\
E_{1,3,1}=E_{3,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=14\right) \\
E_{2,3,1}=E_{3,2,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=17\right) \\
E_{1,1,2}=\text { one state }\left(n^{2}+m^{2}+4 l^{2}=18\right)
\end{gathered}
$$

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a symmetry operation, ie some of these states are accidentally degenerated. These four can be grouped in the following way.

$$
\begin{aligned}
& E_{1,2,2}=E_{2,1,2}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=21\right) \\
& E_{1,4,1}=E_{4,1,1}=\text { two states }\left(n^{2}+m^{2}+4 l^{2}=21\right)
\end{aligned}
$$

