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1. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the
time-independent Schrödinger equation

− h̄2

2m

d2u(x)

dx2
+ V (x)u(x) = Eu(x),

with V (x) zero everywhere. Thus, the eigenvalue equation reads

d2u(x)

dx2
+ k2u(x) = 0,

where k2 = 2mE/h̄2. The eigenfunctions are given by the plane waves eikx and e−ikx, or linear
combinations of these, as e.g. sin kx and cos kx.

(a) The wave function of the particle at t = 0 is given by

ψ(x, 0) = cos3(kx) + sin5(kx).

This is not an eigenfunction in itself but it can be written as using the Euler relations

ψ(x, 0) =

(

eikx + e−ikx

2

)3

+ ψ(x, 0) =

(

eikx − e−ikx

2i

)5

= (1)

1

8

(

ei3kx + 3eikx + 3e−ikx + e−i3kx
)

+ (2)

1

32i

(

ei5kx − 5ei3kx + 10eikx − 10e−ikx + 5e−i3kx − e−i5kx
)

= (3)

3

4
cos(kx) +

1

4
cos(3kx) +

1

16
sin(5kx)− 5

16
sin(3kx) +

10

16
sin(kx) (4)

Thus, ψ(x, 0) can be written as a superposition of plane waves with three different values of
k1 = k, k2 = 3k and k3 = 5k

(b) The energy of a plane wave eikx is given by E = h̄2k2/2m. Thus, the energy of eik1x (or
e−ik1x) is E1 = h̄2k2/2m and the energy of eik2x (or e−ik2x) is E2 = h̄2k22/2m = 9h̄2k2/2m.
and the energy of eik3x (or e−ik3x) is E3 = h̄2k22/2m = 25h̄2k2/2m.

(c) The function u(x) = eikx is a solution to the the time-independent Schrödinger equation.
The corresponding solutions to the time-dependent Schrödinger equation are given by
u(x)T (t),with T (t) = e−iEt/h̄. Therefore, u(x)T (t) = ei(kx−Et/h̄). A sum of solutions of this
form is also a solution, since the Schrödinger equation is linear. This means that if ψ(x, 0)
is given by equation (4), then the time dependent solution is given by

ψ(x, t) =
1

8

(

ei3kx + e−i3kx
)

e−iE2t/h̄ +
3

8

(

eikx + e−ikx
)

e−iE1t/h̄ + (5)

1

32i

(

ei5kx − e−i5kx
)

e−iE3t/h̄ − 5

32i

(

ei3kx − e−i3kx
)

e−iE2t/h̄ +
10

32i

(

eikx − e−ikx
)

e−iE1t/h̄ = (6)

(7)

where

E1 =
h̄2k2

2m
and E2 =

9h̄2k2

2m
and E3 =

25h̄2k2

2m
(8)
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2. (a) The parity of a hydrogen eigenfunction ψnlml
(r) is given by (−1)l. The given wave function

Ψ(r) is a mixture of eigenfunctions of different parity. Hence Ψ(r) cannot have a definite
parity.

(b) The probability is given by the absolute square of the coefficients. The probabilities are (in
order) 4

15
, 9

15
, 1

15
, 1

15
. as a check they sum up to 1 as they should do.

(c) The energy of a single state is given by: En = −13.56
n2 eV. The expectation value is given by

< E >= 4
15
(−13.56

12
) + 9

15
(−13.56

22
) + 1

15
(−13.56

32
) + 1

15
(−13.56

32
) = −13.56( 4

15
+ 9

60
+ 1

135
+ 1

135
) =

−5.851 eV

The operator L2 has eigenvalues h̄2l(l + 1). The expectation value is given by
< L

2 >= 4
15

· 0 + 9
15

· 0 + 1
15
(h̄21(1 + 1)) + 1

15
(h̄22(2 + 1)) = 8

15
h̄2

The operator Lz has eigenvalues h̄ml. The expectation value is given by
< Lz >=

4
15

· 0 + 9
15

· 0 + 1
15

· 0 + 1
15
(h̄2) = 2

15
h̄

3. Hydrogenic atoms have eigenfunctions ψnlm = Rnl(r)Ylm(θ, ϕ). Using the Collection of

formulae we find

ψ100(r) =
(

Z3

πa3
0

)1/2
e−Zr/a0

ψ200(r) =
(

Z3

8πa3
0

)1/2 (

1− Zr
2a0

)

e−Zr/2a0

ψ210(r) =
(

Z3

32πa3
0

)1/2
Zr
a0

cos θe−Zr/2a0

ψ21±1(r) =
(

Z3

πa3
0

)1/2
Zr
8a0

sin θe±iϕe−Zr/2a0

where a0 is the Bohr radius. The β-decay instantaneously changes Z = 1 → Z = 2. According
to the expansion theorem, it is possible to express the wave function ui(r) before the decay as a
linear combination of eigenfunctions vj(r) after the decay as

ui(r) =
∑

j

ajvj(r)

where
aj =

∫

v∗j (r)ui(r)d
3r.

The probability to find the electron in state j is given by |aj|2.

(a) Here ui = ψ100(Z = 1) and vj = ψ200(Z = 2). This gives

a =

(

1

πa30

)1/2 (
23

8πa30

)1/2
∫

∞

0
e−r/a0

(

1− 2r

2a0

)

e−2r/2a04πr2dr

=
4

a30

∫

∞

0
e−2r/a0

(

r2 − r3

a0

)

dr =
4

a30

[

2
(

a0
2

)3

− 6

a0

(

a0
2

)4
]

= −1

2
.

Thus, the probability is 1/4 = 0.25.

(b) For ui = ψ100(Z = 1) and vj = ψ210(Z = 2) the θ-integral is

∫ π

0
cos θ sin θdθ =

1

2

∫ π

0
sin 2θdθ =

[

−cos 2θ

4

]π

0

= 0.

For ui = ψ100(Z = 1) and vj = ψ21±1(Z = 2) the ϕ-integral is
∫ 2π

0
e±iϕdϕ = 0.

Thus, the probability to find the electron in a 2p state is zero.
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(c) Here ui = ψ100(Z = 1) and vj = ψ100(Z = 2). This gives

a =

(

1

πa30

)1/2 (
23

πa30

)1/2
∫

∞

0
e−r/a0e−2r/a04πr2dr =

8
√
2

a30

∫

∞

0
e−3r/a0r2dr

=
8
√
2

a30

a30
33

∫

∞

0
e−xx2dx =

8
√
2

27

∫

∞

0
e−xx2dx =

8
√
2

27

∫

∞

0
2e−xdx =

16
√
2

27

Thus, the probability is 512/729 ≈ 0.70233.

(The probability to find the electron in ψ100(Z = 2) is 512/729 = 0.702. Therefore, the
electron is found with 95% probability in one of the states 1s or 2s.)

(d) No l has to be less than n.

4. (a) i. Π̂C
(

sin(πx
L
) + sin(3πx

L
)
)

= C
(

sin(−πx
L

) + sin(−3πx
L

)
)

= −C
(

sin(πx
L
) + sin(3πx

L
)
)

, the
eigenvalue is -1

ii. Π̂Ce−a
√

x2+y2+z2 = CCe−a
√

(−x)2+(−y)2+(−z)2 = Ce−a
√

x2+y2+z2 , the eigenvalue is +1

iii. Π̂Cf(r) (cos(θ) + cos3(θ)) eiφ = Cf(r) (cos(π − θ) + cos3(π − θ)) ei(φ+π) =
Cf(r) (− cos(θ) +−cos3(θ)) (−eiφ) = Cf(r) (cos(θ) + cos3(θ)) eiφ , the eigenvalue is
+1

(b) i. Π̂(2ψ+(x, y, z) + 3ψ−(x, y, z)) = +2ψ+(x, y, z) +−3ψ−(x, y, z) 6=
λ(2ψ+(x, y, z) + 3ψ−(x, y, z)) , not an eigenfunction.

ii. Π̂2(2ψ+(x, y, z) + 3ψ−(x, y, z)) = Π̂(+2ψ+(x, y, z) +−3ψ−(x, y, z)) =
2ψ+(x, y, z) + 3ψ−(x, y, z) , an eigenfunction with eigenvalue +1.

iii. Π̂e−ikx = e+ikx 6= e−ikx not an eigenfunction and neither is eikx. We can however form
linear combinations that have parity. The function eikx − e−ikx has parity
Π̂e+ikx − e−ikx = e−ikx − e+ikx = −1(e+ikx − e−ikx) with eigenvalue -1. The function
eikx + e−ikx has parity Π̂e+ikx + e−ikx = e−ikx + e+ikx = +1(e+ikx + e−ikx) with
eigenvalue +1.

5. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in
one dimesion is adequate). The width of the well is a.

ψn(x) =

√

2

a
sin

nπx

a
and the eigenenergys are En =

n2π2h̄2

2ma2
where n = 1, 2, 3, ...

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about
separation of variables is needed to justify the structure of the solution)

Ψn,m,l(x, y) = ψn(x) · ψm(y) · ψl(z) and eigenenergys En,m = En +Em +El where the indecies are
n = 1, 2, 3, .. , m = 1, 2, 3, .. and l = 1, 2, 3, ..

a) The eigenfunctions inside the box are (note the sidelength is a/2 for one of the sides)

Ψn,m,l(x, y, z) =

√

2

a
sin

nπx

a
·
√

2

a
sin

mπy

a
·
√

4

a
sin

lπ2z

a
where n = 1, 2, 3, .. ,m = 1, 2, 3, .. and l = 1, 2, 3, ..

The eigenfunctions outside the box are Ψn,m,l(x, y, z) = 0
b) The seven lowest eigenenergys are (note the 4 associated to the quantum number l this is due
to that the length of the box along the z direction is only half of the other two that are of equal
length):
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En,m,l =
π2h̄2

2ma2
(n2 +m2 + 4l2), where the 7 lowest are (n2 +m2 + 4l2) = 6, 9, 12, 14, 18, and 21.

c) The seven lowest eigenenergys have degeneracys (different ways to choose n,m, l to form the
same energy) (either one, two or four) as follows:

E1,1,1 = one state (n2 +m2 + 4l2 = 6)

E1,2,1 = E2,1,1 = two states (n2 +m2 + 4l2 = 9)

E2,2,1 = one state (n2 +m2 + 4l2 = 12)

E1,3,1 = E3,1,1 = two states (n2 +m2 + 4l2 = 14)

E2,3,1 = E3,2,1 = two states (n2 +m2 + 4l2 = 17)

E1,1,2 = one state (n2 +m2 + 4l2 = 18)

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a
symmetry operation, ie some of these states are accidentally degenerated. These four can be
grouped in the following way.

E1,2,2 = E2,1,2 = two states (n2 +m2 + 4l2 = 21)

E1,4,1 = E4,1,1 = two states (n2 +m2 + 4l2 = 21)
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