LULEÅ UNIVERSITY OF TECHNOLOGY Division of Physics

Solution to written exam in QUANTUM PHYSICS F0047T Examination date: 2013-01-15

1. (a)
$$i\hbar \frac{\partial^2}{\partial t^2} \cos \omega t = -i\hbar \omega \frac{\partial}{\partial t} \sin \omega t = -i\hbar \omega^2 \cos \omega t$$
 YES
(b) $\frac{\partial}{\partial x} e^{ikx} = ike^{ikx}$ **YES**
(c) $\frac{\partial}{\partial x} e^{-ax^2} = -2axe^{-ax^2}$ **NO**
(d) $\frac{\partial}{\partial x} \cos kx = -k \sin kx$ **NO**
(e) $\frac{\partial}{\partial x} kx = k$ **NO**
(f) $\hat{P} \sin(kx) = \sin(-kx) = -\sin(kx)$ **YES**

2. Rewrite $L_x^2 + L_y^2 = L^2 - L_z^2$, which gives the Hamiltonian

$$H = \frac{L^2 - L_z^2}{3\hbar^2} + \frac{L_z^2}{4\hbar^2}.$$

The eigenfunctions are $Y_{l,m}$

$$HY_{l,m} = \left(\frac{L^2 - L_z^2}{3\hbar^2} + \frac{L_z^2}{4\hbar^2}\right)Y_{l,m} = \left(\frac{l(l+1)\hbar^2 - m^2\hbar^2}{3\hbar^2} + \frac{m^2\hbar^2}{4\hbar^2}\right)Y_{l,m}.$$

Hence the energies are:

$$E_{l,m} = \left(\frac{l(l+1)}{3} - \frac{m^2}{12}\right).$$

An important issue is the relation between l and m_l , ie l = 0, 1, 2, 3, ... and $m_l = -l, -l + 1, ..., 0, l - 1, l$. Or it may also be expressed through where it from the treatment is clear how l and m_l are related. The lowest (ground state) energy is $E_{0,0} = 0$ (l = 0 no rotation). $l = 1 \rightarrow m = 0, \pm 1$, gives $E_{1,0} = \frac{2}{3}$ eV $E_{1,\pm 1} = \frac{7}{12}$ eV $l = 2 \rightarrow m = 0, \pm 1, \pm 2$, gives $E_{2,0} = 2$ eV $E_{2,\pm 1} = \frac{23}{12}$ eV $E_{2,\pm 2} = \frac{5}{3}$ eV .

3. (a) There are several ways to determine A. One is to integrate and use the normalization condition to solve for A. A different path (done here) is to write the given wave function in terms of eigenfunctions. The eigenfunctions are (PH) $\psi(x) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi x}{a})$. We can directly conclude that the given wave function consists of eigenfunctions with n = 1 and n = 5, we can write:

$$\psi(x,0) = \frac{A\sqrt{2}}{\sqrt{2a}}\sin\left(\frac{\pi x}{a}\right) + \frac{\sqrt{2}}{\sqrt{2\cdot 5a}}\sin\left(\frac{5\pi x}{a}\right) = \frac{A}{\sqrt{2}}\psi_1(x,0) + \frac{1}{\sqrt{10}}\psi_5(x,0)$$

As both eigenfunctions are orthonormal the normalisation integral reduces to $\frac{A^2}{2} + \frac{1}{10} = 1$ and hence $A = \sqrt{\frac{18}{10}} = \sqrt{\frac{9}{5}} = \frac{3}{\sqrt{5}}$

- (b) The wave function contains only n = 1 and n = 5 eigenfunctions and therefore the only possible outcomes of an energy measurement are $E_1 = \frac{\hbar^2 \pi^2}{2ma^2}$ with probability $\frac{A^2}{2} = 0.9$ and $E_5 = \frac{\hbar^2 \pi^2}{2ma^2} 25$ with probability 1 0.9 = 0.1. The average energy is given by $\langle E \rangle = 0.9E_1 + 0.1E_5 = \frac{\hbar^2 \pi^2}{2ma^2} (0.9 + 0.1 \cdot 25) = 3.4 \cdot \frac{\hbar^2 \pi^2}{2ma^2} = 1.7 \cdot \frac{\hbar^2 \pi^2}{ma^2}$
- (c) The time dependent solution is given by $\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n t/\hbar}$ and hence

$$\Psi(x,t) = \sqrt{\frac{9}{10}}\psi_1(x,0)e^{-i\frac{\hbar\pi^2 t}{2ma^2}} + \frac{1}{\sqrt{10}}\psi_5(x,0)e^{-i\frac{25\hbar\pi^2 t}{2ma^2}}$$

4. The harmonic oscillator eigenfunction of the ground state is

$$\psi_0(x) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} e^{-\frac{1}{2}\alpha^2 x^2}$$
 where $\alpha = \sqrt{\frac{m\omega}{\hbar}}$.

The four expectation values we are asked to calculate are $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$ by explicit integration. By arguments of symmetry we find that $\langle x \rangle = 0$ and the same is for $\langle p \rangle = 0$, as both will be integrals of an odd function that approaches zero exponentially as the arguments go to $\pm \infty$.

The first integral to calculate (use integration by parts) will be for $\langle x^2 \rangle$

$$\langle 0 \mid x^2 \mid 0 \rangle = \int \psi_0^*(x) x^2 \psi_0(x) dx = \int \frac{\alpha}{\sqrt{\pi}} x^2 \ e^{-\alpha^2 x^2} dx = [\alpha x = y] = \frac{1}{\alpha^2 \sqrt{\pi}} \int y^2 \ e^{-y^2} dy$$

where the integral taken separately will be

$$\int_{-\infty}^{\infty} y^2 \ e^{-y^2} dy = \left[-\frac{y^1}{2}e^{-y^2}\right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{2}e^{-y^2} = 0 + \frac{1}{2}\sqrt{\pi} = \frac{\sqrt{\pi}}{2}$$

and we arrive at:

$$\langle 0 \mid x^2 \mid 0 \rangle = \frac{1}{\alpha^2 \sqrt{\pi}} \frac{\sqrt{\pi}}{2} = \frac{1}{2\alpha^2}$$

Note on dimensions. As an argument of an exponential function has to be dimensionless this requires the product αx to be dimensionless. As x has dimension 'length' the dimension of α has to be '1/length'. So the expression for $\langle x^2 \rangle$ has to contain a one over α squared in order to have the correct dimension.

For the second integral $\langle p^2 \rangle$ we have $(p = -i\hbar \frac{\partial}{\partial x})$

$$\langle 0 \mid p^2 \mid 0 \rangle = \int \psi_0^*(x) p^2 \psi_0(x) dx = \int \frac{\alpha}{\sqrt{\pi}} e^{-\frac{1}{2}\alpha^2 x^2} (-i\hbar \frac{\partial}{\partial x})^2 \ e^{-\frac{1}{2}\alpha^2 x^2} dx = -\hbar^2 \int \frac{\alpha}{\sqrt{\pi}} e^{-\frac{1}{2}\alpha^2 x^2} \alpha^2 (\alpha^2 x^2 - 1) e^{-\frac{1}{2}\alpha^2 x^2} dx = -\hbar^2 \langle 0 \mid (\alpha^2 (\alpha^2 x^2 - 1) \mid 0) \rangle = -\hbar^2 \left(\alpha^2 \langle 0 \mid \alpha^2 x^2 \mid 0 \rangle - \langle 0 \mid \alpha^2 \mid 0 \rangle \right) = -\hbar^2 \left(\alpha^4 \frac{1}{2\alpha^2} - \alpha^2 \right) = \frac{1}{2} \hbar^2 \alpha^2$$

Uncertainty is defined by: $\langle \Delta p \rangle = \sqrt{\langle p^2 \rangle - \langle p \rangle^2}$ and as both $\langle x \rangle$ and $\langle p \rangle$ are zero we arrive at:

$$\langle \Delta p \rangle \langle \Delta x \rangle = \sqrt{\frac{1}{2}\hbar^2 \alpha^2 \cdot \frac{1}{2\alpha^2}} = \hbar \frac{1}{2} = \frac{\hbar}{2}$$

which is larger or equal to $\frac{\hbar}{2}$ as it should be according to the uncertainty principal.

5. The system is initially in its ground state. The initial state when the particle is under the influence of a potential characterized by the frequency ω_1 is the ground state $\psi_0^{(\omega_1)}$. Immediately after the change to ω_2 we need to analyse the 'new' system with the new eigenfunctions $\psi_j^{(\omega_2)}$. The relation between the 'old' and the 'new' system is given by the completeness relation

$$\psi_0^{(\omega_1)} = \sum_{j=0}^{\infty} c_j \psi_j^{(\omega_2)} \tag{1}$$

where the coefficients c_j describe the spectral distribution for the new eigenstates in relation to the initial. The probability to find the system in the state j is given by $|c_j|^2$. Here we will use the ground state prior to the sudden change $\psi_0^{(\omega_1)} = \sqrt[4]{\frac{m\omega_1}{\hbar\pi}} e^{-\frac{m\omega_1 x^2}{\hbar^2}}$ and also the ground and first excited state after the change.

In **a** we have to calculate c_0 , which is given by the integral:

$$c_0 = \int \left(\psi_0^{(\omega_2)}\right)^* \psi_0^{(\omega_1)} dx$$
 (2)

The ground state wave function (after) is $\psi_0^{(\omega_2)} = \sqrt[4]{\frac{m\omega_2}{\hbar\pi}} e^{-\frac{m\omega_2 x^2}{\hbar^2}}$. Now calculate c_0 according to

$$c_0 = \int \sqrt[4]{\frac{m\omega_2}{\hbar\pi}} e^{-\frac{m\omega_2 x^2}{\hbar^2}} \sqrt[4]{\frac{m\omega_1}{\hbar\pi}} e^{-\frac{m\omega_1 x^2}{\hbar^2}} dx = \int \sqrt{\frac{m}{\hbar\pi}} \sqrt[4]{\omega_1 \omega_2} e^{-\frac{m(\omega_1 + \omega_2) x^2}{\hbar^2}} dx \tag{3}$$

Make a change of variables $\sqrt{\frac{m(\omega_1+\omega_2)}{2\hbar}}x = y$ and $dx = \sqrt{\frac{2\hbar}{m(\omega_1+\omega_2)}}dy$.

$$c_0 = \int \sqrt{\frac{m}{\hbar\pi}} \sqrt{\frac{2\hbar}{m(\omega_1 + \omega_2)}} \sqrt[4]{\omega_1 \omega_2} e^{-y^2} dy = \sqrt[4]{\frac{4\omega_1 \omega_2}{(\omega_1 + \omega_2)^2}}$$
(4)

The probability for the system to be in the new ground state is $|c_0|^2 = \sqrt{\frac{4\omega_1\omega_2}{(\omega_1+\omega_2)^2}}$. $= \frac{2\sqrt{\omega_1\omega_2}}{(\omega_1+\omega_2)^2}$. In **b**) we have to make a similar calculation as in **a**). We can however note that the wave function for the first excited state is $\psi_1^{(\omega_2)} = \sqrt[4]{\frac{m\omega_2}{\hbar\pi}}\sqrt{2}\frac{m\omega_2}{\hbar\pi}xe^{-\frac{m\omega_2x^2}{\hbar^2}}$. This is however an **odd** function and hence the integrand for c_1 is odd and we arrive at $c_1 = 0.00$