LULEA UNIVERSITY OF TECHNOLOGY

Division of Physics
Solution to written exam in Quantum Physics F0047T
Examination date: 2013-01-15

1. (a) $i \hbar \frac{\partial^{2}}{\partial t^{2}} \cos \omega t=-i \hbar \omega \frac{\partial}{\partial t} \sin \omega t=-i \hbar \omega^{2} \cos \omega t \quad$ YES
(b) $\frac{\partial}{\partial x} e^{i k x}=i k e^{i k x} \quad$ YES
(c) $\frac{\partial}{\partial x} e^{-a x^{2}}=-2 a x e^{-a x^{2}} \quad \mathrm{NO}$
(d) $\frac{\partial}{\partial x} \cos k x=-k \sin k x \quad \mathrm{NO}$
(e) $\frac{\partial}{\partial x} k x=k \quad \mathrm{NO}$
(f) $\hat{P} \sin (k x)=\sin (-k x)=-\sin (k x)$ YES
2. Rewrite $L_{x}^{2}+L_{y}^{2}=L^{2}-L_{z}^{2}$, which gives the Hamiltonian

$$
H=\frac{L^{2}-L_{z}^{2}}{3 \hbar^{2}}+\frac{L_{z}^{2}}{4 \hbar^{2}} .
$$

The eigenfunctions are $Y_{l, m}$

$$
H Y_{l, m}=\left(\frac{L^{2}-L_{z}^{2}}{3 \hbar^{2}}+\frac{L_{z}^{2}}{4 \hbar^{2}}\right) Y_{l, m}=\left(\frac{l(l+1) \hbar^{2}-m^{2} \hbar^{2}}{3 \hbar^{2}}+\frac{m^{2} \hbar^{2}}{4 \hbar^{2}}\right) Y_{l, m}
$$

Hence the energies are:

$$
E_{l, m}=\left(\frac{l(l+1)}{3}-\frac{m^{2}}{12}\right)
$$

An important issue is the relation between l and m_{l}, ie $l=0,1,2,3, \ldots$ and $m_{l}=-l,-l+1, \ldots, 0, l-1, l$. Or it may also be expressed through where it from the treatment is clear how l and m_{l} are related. The lowest (ground state) energy is $E_{0,0}=0$ ($l=0$ no rotation).
$l=1 \rightarrow m=0, \pm 1$, gives $E_{1,0}=\frac{2}{3} \mathrm{eV} E_{1, \pm 1}=\frac{7}{12} \mathrm{eV}$
$l=2 \rightarrow m=0, \pm 1, \pm 2$, gives $E_{2,0}=2 \mathrm{eV} E_{2, \pm 1}=\frac{23}{12} \mathrm{eV} E_{2, \pm 2}=\frac{5}{3} \mathrm{eV}$
3. (a) There are several ways to determine A. One is to integrate and use the normalization condition to solve for A. A different path (done here) is to write the given wave function in terms of eigenfunctions. The eigenfunctions are (PH) $\psi(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)$. We can directly conclude that the given wave function consists of eigenfunctions with $n=1$ and $n=5$, we can write:

$$
\psi(x, 0)=\frac{A \sqrt{2}}{\sqrt{2 a}} \sin \left(\frac{\pi x}{a}\right)+\frac{\sqrt{2}}{\sqrt{2 \cdot 5 a}} \sin \left(\frac{5 \pi x}{a}\right)=\frac{A}{\sqrt{2}} \psi_{1}(x, 0)+\frac{1}{\sqrt{10}} \psi_{5}(x, 0)
$$

As both eigenfunctions are orthonormal the normalisation integral reduces to $\frac{A^{2}}{2}+\frac{1}{10}=1$ and hence $A=\sqrt{\frac{18}{10}}=\sqrt{\frac{9}{5}}=\frac{3}{\sqrt{5}}$
(b) The wave function contains only $n=1$ and $n=5$ eigenfunctions and therefore the only possible outcomes of an energy meassurement are $E_{1}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}$ with probability $\frac{A^{2}}{2}=0.9$ and $E_{5}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} 25$ with probability $1-0.9=0.1$. The average energy is given by $<E>=0.9 E_{1}+0.1 E_{5}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}(0.9+0.1 \cdot 25)=3.4 \cdot \frac{\hbar^{2} \pi^{2}}{2 m a^{2}}=1.7 \cdot \frac{\hbar^{2} \pi^{2}}{m a^{2}}$
(c) The time dependent solution is given by $\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) e^{-i E_{n} t / \hbar}$ and hence

$$
\Psi(x, t)=\sqrt{\frac{9}{10}} \psi_{1}(x, 0) e^{-i \frac{\hbar \pi^{2} t}{2 m a^{2}}}+\frac{1}{\sqrt{10}} \psi_{5}(x, 0) e^{-i \frac{25 \hbar \pi^{2} t}{2 m a^{2}}}
$$

4. The harmonic oscillator eigenfunction of the ground state is

$$
\psi_{0}(x)=\sqrt{\frac{\alpha}{\sqrt{\pi}}} e^{-\frac{1}{2} \alpha^{2} x^{2}} \text { where } \alpha=\sqrt{\frac{m \omega}{\hbar}} .
$$

The four expectation values we are asked to calculate are $\langle x\rangle,\langle p\rangle,\left\langle x^{2}\right\rangle,\left\langle p^{2}\right\rangle$ by explicit integration. By arguments of symmetry we find that $\langle x\rangle=0$ and the same is for $\langle p\rangle=0$, as both will be integrals of an odd function that approaches zero exponentially as the arguments go to $\pm \infty$.
The first integral to calculate (use integration by parts) will be for $\left\langle x^{2}\right\rangle$

$$
\langle 0| x^{2}|0\rangle=\int \psi_{0}^{*}(x) x^{2} \psi_{0}(x) d x=\int \frac{\alpha}{\sqrt{\pi}} x^{2} e^{-\alpha^{2} x^{2}} d x=[\alpha x=y]=\frac{1}{\alpha^{2} \sqrt{\pi}} \int y^{2} e^{-y^{2}} d y
$$

where the integral taken separatelly will be

$$
\int_{-\infty}^{\infty} y^{2} e^{-y^{2}} d y=\left[-\frac{y^{1}}{2} e^{-y^{2}}\right]_{-\infty}^{\infty}+\int_{-\infty}^{\infty} \frac{1}{2} e^{-y^{2}}=0+\frac{1}{2} \sqrt{\pi}=\frac{\sqrt{\pi}}{2}
$$

and we arrive at:

$$
\langle 0| x^{2}|0\rangle=\frac{1}{\alpha^{2} \sqrt{\pi}} \frac{\sqrt{\pi}}{2}=\frac{1}{2 \alpha^{2}}
$$

Note on dimensions. As an argument of an exponential function has to be dimensionless this requires the product αx to be dimensionless. As x has dimension 'length' the dimension of α has to be ' $1 /$ length'. So the expression for $\left\langle x^{2}\right\rangle$ has to contain a one over α squared in order to have the correct dimension.
For the second integral $\left\langle p^{2}\right\rangle$ we have $\left(p=-i \hbar \frac{\partial}{\partial x}\right.$)

$$
\begin{gathered}
\langle 0| p^{2}|0\rangle=\int \psi_{0}^{*}(x) p^{2} \psi_{0}(x) d x=\int \frac{\alpha}{\sqrt{\pi}} e^{-\frac{1}{2} \alpha^{2} x^{2}}\left(-i \hbar \frac{\partial}{\partial x}\right)^{2} e^{-\frac{1}{2} \alpha^{2} x^{2}} d x= \\
-\hbar^{2} \int \frac{\alpha}{\sqrt{\pi}} e^{-\frac{1}{2} \alpha^{2} x^{2}} \alpha^{2}\left(\alpha^{2} x^{2}-1\right) e^{-\frac{1}{2} \alpha^{2} x^{2}} d x=-\hbar^{2}\langle 0|\left(\alpha^{2}\left(\alpha^{2} x^{2}-1\right)|0\rangle=\right. \\
-\hbar^{2}\left(\alpha^{2}\langle 0| \alpha^{2} x^{2}|0\rangle-\langle 0| \alpha^{2}|0\rangle\right)=-\hbar^{2}\left(\alpha^{4} \frac{1}{2 \alpha^{2}}-\alpha^{2}\right)=\frac{1}{2} \hbar^{2} \alpha^{2}
\end{gathered}
$$

Uncertainty is defined by: $\langle\Delta p\rangle=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}$ and as both $\langle x\rangle$ and $\langle p\rangle$ are zero we arrive at:

$$
\langle\Delta p\rangle\langle\Delta x\rangle=\sqrt{\frac{1}{2} \hbar^{2} \alpha^{2} \cdot \frac{1}{2 \alpha^{2}}}=\hbar \frac{1}{2}=\frac{\hbar}{2}
$$

which is larger or equal to $\frac{\hbar}{2}$ as it should be according to the uncertainty principal.
5. The system is initially in its ground state. The initial state when the particle is under the influence of a potential characterized by the frequency ω_{1} is the ground state $\psi_{0}^{\left(\omega_{1}\right)}$. Immediately after the change to ω_{2} we need to analyse the 'new' system with the new eigenfunctions $\psi_{j}^{\left(\omega_{2}\right)}$. The relation between the 'old' and the 'new' system is given by the completeness relation

$$
\begin{equation*}
\psi_{0}^{\left(\omega_{1}\right)}=\sum_{j=0}^{\infty} c_{j} \psi_{j}^{\left(\omega_{2}\right)} \tag{1}
\end{equation*}
$$

where the coefficients c_{j} describe the spectral distribution for the new eigenstates in relation to the initial. The probability to find the system in the state j is given by $\left|c_{j}\right|^{2}$. Here we will use the ground state prior to the sudden change $\psi_{0}^{\left(\omega_{1}\right)}=\sqrt[4]{\frac{m \omega_{1}}{\hbar \pi}} e^{-\frac{m \omega_{1} x^{2}}{\hbar 2}}$ and also the ground and first excited state after the change.
In a we have to calculate c_{0}, which is given by the integral:

$$
\begin{equation*}
c_{0}=\int\left(\psi_{0}^{\left(\omega_{2}\right)}\right)^{*} \psi_{0}^{\left(\omega_{1}\right)} d x \tag{2}
\end{equation*}
$$

The ground state wave function (after) is $\psi_{0}^{\left(\omega_{2}\right)}=\sqrt[4]{\frac{m \omega_{2}}{\hbar \pi}} e^{-\frac{m \omega_{2} x^{2}}{\hbar 2}}$. Now calculate c_{0} according to

$$
\begin{equation*}
c_{0}=\int \sqrt[4]{\frac{m \omega_{2}}{\hbar \pi}} e^{-\frac{m \omega_{2} x^{2}}{\hbar 2}} \sqrt[4]{\frac{m \omega_{1}}{\hbar \pi}} e^{-\frac{m \omega_{1} x^{2}}{\hbar 2}} d x=\int \sqrt{\frac{m}{\hbar \pi}} \sqrt[4]{\omega_{1} \omega_{2}} e^{-\frac{m\left(\omega_{1}+\omega_{2}\right) x^{2}}{\hbar 2}} d x \tag{3}
\end{equation*}
$$

Make a change of variables $\sqrt{\frac{m\left(\omega_{1}+\omega_{2}\right)}{2 \hbar}} x=y$ and $d x=\sqrt{\frac{2 \hbar}{m\left(\omega_{1}+\omega_{2}\right)}} d y$.

$$
\begin{equation*}
c_{0}=\int \sqrt{\frac{m}{\hbar \pi}} \sqrt{\frac{2 \hbar}{m\left(\omega_{1}+\omega_{2}\right)}} \sqrt[4]{\omega_{1} \omega_{2}} e^{-y^{2}} d y=\sqrt[4]{\frac{4 \omega_{1} \omega_{2}}{\left(\omega_{1}+\omega_{2}\right)^{2}}} \tag{4}
\end{equation*}
$$

The probability for the system to be in the new ground state is $\left|c_{0}\right|^{2}=\sqrt{\frac{4 \omega_{1} \omega_{2}}{\left(\omega_{1}+\omega_{2}\right)^{2}}}$. $=\frac{2 \sqrt{\omega_{1} \omega_{2}}}{\left(\omega_{1}+\omega_{2}\right)}$.
In \mathbf{b}) we have to make a similar calculation as in \mathbf{a}). We can however note that the wave function for the first excited state is $\psi_{1}^{\left(\omega_{2}\right)}=\sqrt[4]{\frac{m \omega_{2}}{\hbar \pi}} \sqrt{2} \frac{m \omega_{2}}{\hbar \pi} x e^{-\frac{m \omega_{2} x^{2}}{\hbar 2}}$. This is however an odd function and hence the integrand for c_{1} is odd and we arrive at $c_{1}=0.00$

