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1. (a) ih̄ ∂2

∂t2
cosωt = −ih̄ω ∂

∂t
sinωt = −ih̄ω2 cosωt YES

(b) ∂
∂x
eikx = ikeikx YES

(c) ∂
∂x
e−ax

2
= −2axe−ax

2
NO

(d) ∂
∂x

cos kx = −k sin kx NO

(e) ∂
∂x
kx = k NO

(f) P̂ sin(kx) = sin(−kx) = − sin(kx) YES

2. Rewrite L2
x + L2

y = L2 − L2
z, which gives the Hamiltonian

H =
L2 − L2

z

3h̄2 +
L2
z

4h̄2 .

The eigenfunctions are Yl,m

HYl,m =

(
L2 − L2

z

3h̄2 +
L2
z

4h̄2

)
Yl,m =

(
l(l + 1)h̄2 −m2h̄2

3h̄2 +
m2h̄2

4h̄2

)
Yl,m.

Hence the energies are:

El,m =

(
l(l + 1)

3
− m2

12

)
.

An important issue is the relation between l and ml, ie l = 0, 1, 2, 3, ... and
ml = −l,−l+ 1, ..., 0, l− 1, l. Or it may also be expressed through where it from the treatment is
clear how l and ml are related. The lowest (ground state) energy is E0,0 = 0 (l = 0 no rotation).

l = 1→ m = 0,±1, gives E1,0 = 2
3
eV E1,±1 = 7

12
eV

l = 2→ m = 0,±1,±2, gives E2,0 = 2eV E2,±1 = 23
12

eV E2,±2 = 5
3
eV

.

.

.

3. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in

terms of eigenfunctions. The eigenfunctions are (PH) ψ(x) =
√

2
a

sin(nπx
a

). We can directly
conclude that the given wave function consists of eigenfunctions with n = 1 and n = 5, we
can write:

ψ(x, 0) =
A
√

2√
2a

sin
(
πx

a

)
+

√
2√

2 · 5a
sin

(
5πx

a

)
=

A√
2
ψ1(x, 0) +

1√
10
ψ5(x, 0)

As both eigenfunctions are orthonormal the normalisation integral reduces to A2

2
+ 1

10
= 1

and hence A =
√

18
10

=
√

9
5

= 3√
5

1



(b) The wave function contains only n = 1 and n = 5 eigenfunctions and therefore the only

possible outcomes of an energy meassurement are E1 = h̄2π2

2ma2 with probability A2

2
= 0.9 and

E5 = h̄2π2

2ma2 25 with probability 1 - 0.9 = 0.1 . The average energy is given by

< E >= 0.9E1 + 0.1E5 = h̄2π2

2ma2 (0.9 + 0.1 · 25) = 3.4 · h̄2π2

2ma2 = 1.7 · h̄2π2

ma2

(c) The time dependent solution is given by Ψ(x, t) =
∑∞
n=1 cnψn(x)e−iEnt/h̄ and hence

Ψ(x, t) =

√
9

10
ψ1(x, 0)e−i

h̄π2t
2ma2 +

1√
10
ψ5(x, 0)e−i

25h̄π2t
2ma2

4. The harmonic oscillator eigenfunction of the ground state is

ψ0(x) =

√
α√
π
e−

1
2
α2x2

where α =

√
mω

h̄
.

The four expectation values we are asked to calculate are 〈x〉, 〈p〉, 〈x2〉, 〈p2〉 by explicit
integration. By arguments of symmetry we find that 〈x〉 = 0 and the same is for 〈p〉 = 0, as
both will be integrals of an odd function that approaches zero exponentially as the arguments go
to ±∞.

The first integral to calculate (use integration by parts) will be for 〈x2〉

〈0 | x2 | 0〉 =
∫
ψ∗0(x)x2ψ0(x)dx =

∫ α√
π
x2 e−α

2x2

dx = [αx = y] =
1

α2
√
π

∫
y2 e−y

2

dy

where the integral taken separatelly will be∫ ∞
−∞

y2 e−y
2

dy = [−y
1

2
e−y

2

]∞−∞ +
∫ ∞
−∞

1

2
e−y

2

= 0 +
1

2

√
π =

√
π

2

and we arrive at:

〈0 | x2 | 0〉 =
1

α2
√
π

√
π

2
=

1

2α2

Note on dimensions. As an argument of an exponential function has to be dimensionless this
requires the product αx to be dimensionless. As x has dimension ’length’ the dimension of α has
to be ’1/length’. So the expression for 〈x2〉 has to contain a one over α squared in order to have
the correct dimension.

For the second integral 〈p2〉 we have (p = −ih̄ ∂
∂x

)

〈0 | p2 | 0〉 =
∫
ψ∗0(x)p2ψ0(x)dx =

∫ α√
π
e−

1
2
α2x2

(−ih̄ ∂
∂x

)2 e−
1
2
α2x2

dx =

−h̄2
∫ α√

π
e−

1
2
α2x2

α2(α2x2 − 1)e−
1
2
α2x2

dx = −h̄2〈0 | (α2(α2x2 − 1) | 0〉 =

−h̄2
(
α2〈0 | α2x2 | 0〉 − 〈0 | α2 | 0〉

)
= −h̄2

(
α4 1

2α2
− α2

)
=

1

2
h̄2α2

Uncertainty is defined by: 〈∆p〉 =
√
〈p2〉 − 〈p〉2 and as both 〈x〉 and 〈p〉 are zero we arrive at:

〈∆p〉〈∆x〉 =

√
1

2
h̄2α2 · 1

2α2
= h̄

1

2
=
h̄

2

which is larger or equal to h̄
2

as it should be according to the uncertainty principal.
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5. The system is initially in its ground state. The initial state when the particle is under the
influence of a potential characterized by the frequency ω1 is the ground state ψ

(ω1)
0 . Immediately

after the change to ω2 we need to analyse the ’new’ system with the new eigenfunctions ψ
(ω2)
j .

The relation between the ’old’ and the ’new’ system is given by the completeness relation

ψ
(ω1)
0 =

∞∑
j=0

cjψ
(ω2)
j (1)

where the coefficients cj describe the spectral distribution for the new eigenstates in relation to
the initial. The probability to find the system in the state j is given by | cj |2. Here we will use

the ground state prior to the sudden change ψ
(ω1)
0 = 4

√
mω1

h̄π
e−

mω1x
2

h̄2 and also the ground and first

excited state after the change.

In a we have to calculate c0, which is given by the integral:

c0 =
∫ (

ψ
(ω2)
0

)∗
ψ

(ω1)
0 dx (2)

The ground state wave function (after) is ψ
(ω2)
0 = 4

√
mω2

h̄π
e−

mω2x
2

h̄2 . Now calculate c0 according to

c0 =
∫

4

√
mω2

h̄π
e−

mω2x
2

h̄2 4

√
mω1

h̄π
e−

mω1x
2

h̄2 dx =
∫ √

m

h̄π
4
√
ω1ω2e

−m(ω1+ω2)x2

h̄2 dx (3)

Make a change of variables
√

m(ω1+ω2)
2h̄

x = y and dx =
√

2h̄
m(ω1+ω2)

dy.

c0 =
∫ √

m

h̄π

√
2h̄

m(ω1 + ω2)
4
√
ω1ω2e

−y2

dy = 4

√
4ω1ω2

(ω1 + ω2)2
(4)

The probability for the system to be in the new ground state is | c0 |2=
√

4ω1ω2

(ω1+ω2)2 . = 2
√
ω1ω2

(ω1+ω2)
.

In b) we have to make a similar calculation as in a). We can however note that the wave

function for the first excited state is ψ
(ω2)
1 = 4

√
mω2

h̄π

√
2mω2

h̄π
xe−

mω2x
2

h̄2 . This is however an odd

function and hence the integrand for c1 is odd and we arrive at c1 = 0.00
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