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1. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− h̄2

2m

d2

dx2
Ψ(x, y)− h̄2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− h̄2

2m

d2

dx2
ψx(x)− h̄2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on
for y. We therefor solve the one dimensional problem first and after that we construct the
two dimensional solution. To find the eigenfunctions we need to solve the Schrödinger
equation which is (in the region where V (x) is zero)

− h̄2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

h̄2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ(
Ψ(−a

2
) = Ψ(a

2
) = 0

)
into account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0.
These two conditions cannot be fulfilled at the same time, so either A or B has to be zero.

We start with A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the condition
∫ a/2
−a/2 | Ψ |2 dx = 1. The condition sin(ka

2
) = 0 gives

ka
2

= π
2
∗ (even− integer). The solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 2, 4, 6, ... (1)

In a similar way the other function is analysed (A = 0) which gives: The condition
cos(ka

2
) = 0 gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√
2

a
cos(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 3, 5, ... (2)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem
and the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , .
(3)
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In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution
is for these boundary conditions:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (4)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√
2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (5)

ψn(x) =
√

2
a

sin(nπx
a

+ nπ
2

) =
√

2
a

(
sin(nπx

a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)
. We see that we

recover the solution in eq (1), (2) and (3) as we let n run from 1 to ∞.

b) The ground state eigenfunction is given by (using eq. (2))

Ψn=1,m=1(x, y) = ψ1(x) · ψ1(y) =

√
2

a
cos(

πx

a
) ·
√

2

a
cos(

πy

a
) (6)

The next lowest state eigenfunction is given by (using eq. (2) and (1)). Note there are two
eigenfunctions with the same energy (Ψn=1,m=2(x, y)) you may use either one of them.

Ψn=2,m=1(x, y) = ψ2(x) · ψ1(y) =

√
2

a
sin(2

πx

a
) ·
√

2

a
cos(

πy

a
) (7)

Orthogonality is defined as∫
x

∫
y

Ψn1,m1(x, y)Ψn2,m2(x, y) = δn1,n2 δm1,m2 (8)

by explicit calculation∫ a/2

x=−a/2

∫ a/2

y=−a/2

(
2

a
cos(

πx

a
) · cos(

πy

a
)
)
·
(

2

a
sin(2

πx

a
) · cos(

πy

a
)
)

= calculations = 0 (9)

this is a separable integral (in x and y), suggestion do the integral in x first as this will be
zero as they belong to different eigenvalues. Thus the calculation ends with a zero as it
should.

2. A measurement of the spin in the direction n̂ = sin(π
4
)êy + cos(π

4
)êz = 1√

2
êy + 1√

2
êz. The

spin operator Sn̂ is

Sn̂ =
1√
2
Sy +

1√
2
Sz =

h̄

2
√

2

(
1 −i
i −1

)
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The eigenvalue equation is

Sn̂χ = λχ⇔ h̄

2
√

2

(
1 −i
i −1

)(
a
b

)
= λ

(
a
b

)
(10)

We find the eigenvalues from∣∣∣∣∣
h̄

2
√

2
− λ −i h̄

2
√

2

i h̄
2
√

2
− h̄

2
√

2
− λ

∣∣∣∣∣ = 0⇒ λ = ± h̄
2

The eigenspinors to Sn corresponding to the + h̄
2

we get from

h̄

2
√

2

(
1 −i
i −1

)(
a
b

)
= +

h̄

2

(
a
b

)

a√
2
− ib√

2
= a⇔ a(

√
2− 1) = −ib let b = 1 and hence a =

−i√
2− 1

This gives the unnormalised spinor(
− i√

2−1

1

)
and after normalisation we have χn̂+ =

1√
2(2 +

√
2)

(
− i√

2−1

1

)

Now we can expand the initial eigenspinor χ+ in these eigenspinors to Sn, the second
eigenspinor you can get from orthogonality to the first one.(

1
0

)
= A

1√
2(2 +

√
2)

(
− i√

2−1

1

)
+B

1√
2(2 +

√
2)

(
1
−i√
2−1

)

The coefficients are subjected to the normalisation condition |A|2 + |B|2 = 1. The
coefficient A can be obtained by multiplying the previous equation from the left with χ∗n̂+.

A =
1√

2(2 +
√

2)

(
− i√

2− 1
1

)
∗
(

1
0

)
= − i√

2− 1
· 1√

2(2 +
√

2)

The probability (to get + h̄
2
) is given by |A|2.

|A|2 =
3 + 2

√
2

4 + 2
√

2
= 0.8535533906

and (to get − h̄
2
) for |B|2.

|B|2 =
1

4 + 2
√

2
= 0.1464466094

To find the probability for + h̄
2

in the z-direction for the up state of Sn express the state in
the eigenspinors to Sz.

χn̂+ =
1√

2(2 +
√

2)

(
− i√

2−1

1

)
= − i√

2− 1
· 1√

2(2 +
√

2)

(
1
0

)
+

1√
2(2 +

√
2)

(
0
1

)
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The probability is given by the square of the coefficient:∣∣∣∣∣∣− i√
2− 1

· 1√
2(2 +

√
2)

∣∣∣∣∣∣
2

= 0.8535533906

3. (a) There are two ways to reach a solution for this. The usual rule for the vibrational
transition is ∆n = ±1 and this would correspond to a photon of energy hν1 = h̄ω,
note only approximately as we also need a change in the rotational quantum number
l. Here we also allow for anharmonic transitions ∆n = ±2 corresponding to photons
of energy hν2 = 2h̄ω. Considering the relation between wavelength and frequency for
an electromagnetic wave the photon of frequency ν2 will have only half the
wavelength compared to the ν1 photon. Hence the upper is the anharmonic transition
and the lower is the harmonic transition.

The second route is to note that the anharmonic transitions are much rarer.
Comparing the scales for the intensity we note that the lower has an intensity of more
than a factor of 1000 larger than the upper spectra. Hence events contributing to the
upper spectra are much rarer compared to events contributing to the lower spectra.
We can draw the same conclusion the upper is the anharmonic transition and the
lower is the harmonic transition.

After this we do not need to consider the upper anharmonic spectra any more.

(b) Take data from the lower spectra as this is for the harmonic transitions.

The energy levels of a molecule, due to vibrations and rotation, are given by
En,l = (n+ 1

2
)h̄ω + h̄2

2I
l(l + 1). The selection rule for a dipole transition is to change l

by one unit ∆l = ±1. In figure 1 a principal layout of the levels is shown. We first
need to establish the relation between the spectra and the energy levels. For the lower
spectra (of the problem) we have ∆n = −1 (minus sign = emission spectra) and two
possible ∆l = ±1.

We start with an analysis of the transitions between energy levels.

One series has ∆n = −1,∆l = −1: Ie a change from a level with l + 1 to a level with
l.

The energy difference will be
∆E = h̄ω + h̄2

2I
(l + 1)(l + 2)− h̄2

2I
l(l + 1) = h̄2

I
(l + 1), l = 0, 1, 2, 3, which gives the

following energies (for photons):

h̄ω + h̄2

I
, h̄ω + 2 h̄

2

I
, h̄ω + 3 h̄

2

I
, h̄ω + 4 h̄

2

I
, ...

A similar analysis gives the other series ∆n = −1,∆l = +1 (l→ l + 1):

h̄ω − h̄2

I
, h̄ω − 2 h̄

2

I
, h̄ω − 3 h̄

2

I
, h̄ω − 4 h̄

2

I
, ...

All these energy differences will appear in the spectra. It is also clear that there is
always a change in the rotational quantum number l. It therefore seems as if there is
a line missing for the unalowed transition ∆l = 0 in the spectrum corresponding to
the energy h̄ω

The strength of the coupling constant is embedded in the in the frequency ω of the
oscillator, given by the missing line.

4



Figure 1: Energy levels for a diatomic molecule. The long horisontal lines mark the l = 0 levels,
with the vibrational quantum number n to the right. The spacing in energy between these lines
is h̄ω. The states with higher l-values (the rotational bands) give a dense sequence of states for
each n-value. The arrows show two possible transitions, one harmonic (n = 2 → n = 1) and one
anharmonic (n = 2→ n = 0).

Extrapolate the ’wave length’ of the missing line: λ = 3.9 + 4.0−3.9
20.5

2.05 = 3.91µm. The
energy of the missing line corresponds to h̄ω of the oscillator. The strength k of the

bond is from ω =
√
k/µ where µ is the reduced mass. For hydrogen bromide we have

µ = 1.00798·79.904
1.00798+79.904

= 0.99542u = 0.99542 · 1.660538 · 10−27 = 1.6529 · 10−27 kg.

For the strength of the bond we evaluate k = ω2µ = 4π2 c2

λ2
µ =

4π2( 2.998·108

3.91·10−6 )21.6529 · 10−27 = 0.38363 kN/m ≈ 0.384 kN/m.

(c) The missing line would represent a transition with no change of the rotational
quantum number l, ie ∆l = 0. This is not allowed according to the selection rule that
states that ∆l = ±1.

4. Use a test function f(r, θ, φ) to calculate the commutator.

[Lz, sinφ] f(r, θ, φ) =

[
−ih̄ ∂

∂φ
, sinφ

]
f(r, θ, φ)

= −ih̄ ∂
∂φ

sinφf(r, θ, φ)− sinφ

(
−ih̄ ∂

∂φ

)
f(r, θ, φ)

= −ih̄ cosφf − ih̄ sinφ
∂f

∂φ
+ ih̄ sinφ

∂f

∂φ

= −ih̄ cosφf(r, θ, φ).

Thus, [Lz, sinφ] = −ih̄ cosφ.
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5. Rewrite L2
z + L2

y = L2 − L2
x, which gives the Hamiltonian

H =
L2 − L2

x

2h̄2 +
L4
x

4h̄2 =
L2 − L2

x

4h̄2 .

Here we use the freedom to orient the coordinate system such that the appropriate
operators are Lx and L2 instead of the usual conventional Lz and L2. The eigenfunctions
are not the ordinary spherical harmonics but we know the eigenvalue spectrum that is the
same. Lets denote the eigenfunctions by Ỹl,mx

HỸl,mx =

(
L2 − L2

x

2h̄2 +
L2
x

4h̄2

)
Ỹl,mx =

(
l(l + 1)h̄2 −m2

xh̄
2

2h̄2 +
m2
xh̄

2

4h̄2

)
Ỹl,mx .

Hence the energies are:

El,mx =

(
l(l + 1)

2
− m2

x

4

)
.

An important issue is the relation between l and mx, ie l = 0, 1, 2, 3, ... and
mx = −l,−l + 1, ..., 0, l − 1, l. Or it may also be expressed through some kind of treatment
where it from the treatment is clear how l and mx are related. The lowest (ground state)
energy is E0,0 = 0 (l = 0 no rotation).

l = 1→ mx = 0,±1, gives E1,0 = 2
2

= 1eV E1,±1 = 3
4
eV

l = 2→ mx = 0,±1,±2, gives E2,0 = 3eV E2,±1 = 11
4

eV E2,±2 = 2eV

.

.

.
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