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1. First choose a coordinate system. Let the direction of the incoming photon λ be along the
x-axis’s positive direction and let the outgoing photon λ′ nearly go out along the y-axis (15
degrees of) in positive direction.

We can start with the observation that as all momentum before the incident is in the positive
x-direction this has to be true also after the collision. So as momentum is conserved and the
outgoing photon λ′ leaves in the positive y direction, we make the following conclusions about
the electron. The electron must have the same y-momentum in opposite direction to keep the
total y momentum zero. The momentum the electron obtains in the x-direction has to be the
difference between the incident photon and the outgoing photon’s momentum in the x-direction.

(a) for Compton scattering we have the following relation λ′ − λ = h
mec

(1− cos θ).

λ = hc
Ephoton

= 6.626·10−342.998·108

100·1031.602·10−19 = 1.240 · 10−11m = 0.1240 Å. The wave length of the

outgoing photon will be

λ′ = λ+ h(1−cos 75)
mec

= λ+ 6.626·10−34(1−cos 75)
9.109·10−312.998·108

= 1.240 · 10−11 + 1.798 · 10−12 = 1.4198 · 10−11m

= 0.14198Å. The energy is E ′ = hc
λ′

= 6.626·10−342.998·108

1.4198·10−11 = 1.3991 · 10−14J = 87.336keV = 87.3
keV.
Another route to the energy may be: E ′ = hν ′ = E

1+α(1−cos θ)
where α = E

m0c20
. The

dimensionless α = 100·103·1.602·10−19

9.109·10−31·(2.998·108)2
= 0.19567 and E ′ = 100·103

1+0.19567(1−cos 75)
= 87.3 keV.

(b) The energy of the electron will be: 100 - 87.3 = 12.7 keV.

(c) Use conservation of momentum. To calculate the recoil of the electron we have to calculate
the momentum of the photon h/λ.

p0
x = p1

x + pelectronx

p0
y = p1

y + pelectrony

Before the incident p0
x = 6.626·10−34

1.240·10−11 = 5.3435 · 10−23 kg m/s and p0
y = 0.

After the event the outgoing photon has: p1
y = 6.626·10−34

1.4198·10−11 sin(75) = 4.5078 · 10−23 kg m/s

and p1
x = 6.626·10−34

1.4198·10−11 cos(75) = 1.2079 · 10−23 kg m/s.

This yields for the electron pelectronx = p0
x − p1

x = (5.3435− 1.2079) · 10−23 = 4.1356 · 10−23 kg
m/s and pelectrony = −p1

y = −4.5078 · 10−23 kg m/s. The angle of the recoil α is given by

tanα =
pelectrony

pelectronx
= −4.5078

4.1356
= −1.0900 which gives α = −47.5o (note sign).

Another way to calculate the angle φ of the recoiling electron is: Start with
cos θ = 2

(1+α)2 tan2 φ+1
solving for φ yields tanφ =

√
1

(1+α)2
· 1+cos θ

1−cos θ
and with θ = 75 we arrive

at tanφ = 1.089954 and hence φ = 47.46.

We can corroborate the result in b) in the following way: The length of the electrons
momentum vector is pelectron =

√
4.13562 + 4.50782 · 10−23 = 6.1174 · 10−23 kg m/s. The

kinetic energy of the electron can also be calculated from
Ekin = p2/2m = (6.1174 · 10−23)2/(2 · 9.109 · 10−31) = 2.0542 · 10−15J = 12.8keV, the same
result as in b) (well nearly).
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2. a

The spinor is not normalised and we need to do this first:

1 = χ∗χ =| A |2 (2− 5i, 3 + i)

(
2 + 5i
3− i

)
=| A |2 | 2 + 5i |2 | 3− i |2 → A =

1√
39

Note an expectation value is always a real number, never a complex one! Even if you had taken
A to be a complex number like A = i√

39
it would not change the expectation value as the

expectation value below only involves | A |2.

< Sx >=
1

39
(2− 5i, 3 + i)

h̄

2

(
0 1
1 0

)(
2 + 5i
3− i

)
=

1

39
h̄

< Sy >=
1

39
(2− 5i, 3 + i)

h̄

2

(
0 −i
i 0

)(
2 + 5i
3− i

)
= −17

39
h̄

< Sz >=
1

39
(2− 5i, 3 + i)

h̄

2

(
1 0
0 −1

)(
2 + 5i
3− i

)
=

19

78
h̄

b

Measurement along the x direction means: S = (1, 0, 0) · (Sx, Sy, Sz) = Sx. The idea is to expand
the initial spinor χ into the eigenspinors of Sx. So we start to calculate the eigenvalues and
eigenspinors to Sx. The spin operator Sx is

Sx =
h̄

2

(
0 1
1 0

)

we find the eigenvalues from the following equation

Snχ = λχ⇔ h̄

2

(
0 1
1 0

)(
a
b

)
= λ

(
a
b

)
(1)

We find the eigenvalues from the equation∣∣∣∣∣ −λ 1 h̄
2

1 h̄
2
−λ

∣∣∣∣∣ = 0⇒ λ = ± h̄
2

The eigenspinors to Sx corresponding to the + h̄
2

we get from

h̄

2

(
0 1
1 0

)(
a
b

)
= +

h̄

2

(
a
b

)

The two equations above are linearly dependent and one of them is

a = b⇔ let b = 1 and hence a = 1
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This gives the unnormalised spinor(
1
1

)
and after normalisation we have χx+ =

1√
2

(
1
1

)

The other eigenspinor χx− has to be orthogonal to χx+. An appropriate choice is:

χx− =
1√
2

(
1
−1

)

Now we can expand the initial spinor χ in these eigenspinors to Sx.

χ =
1√
39

(
2 + 5i
3− i

)
= b+χx+ + b−χx−

The coefficient b+ is given by

b+ = χ∗x+χ =
1√
78

(1 1) ∗
(

2 + 5i
3− i

)
=

1√
78

(2 + 5i+ 3− i) =
1√
78

(5 + 4i)

A similar calculation gives b− :

b− = χ∗x+χ =
1√
78

(1 − 1) ∗
(

2 + 5i
3− i

)
=

1√
78

(2 + 5i− 3 + i) =
1√
78

(−1 + 6i)

We may now check that | b+ |2 + | b− |2= 1

| b+ |2 + | b− |2=
1

78
(25 + 16 + 1 + 36) = 1 ok

The probability (to get + h̄
2
) is given by |b+|2.

|b+|2 =
1

78
(25 + 16) =

41

78
≈ 0.526

and (to get − h̄
2
) is given by |b−|2.

|b−|2 =
1

78
(1 + 36) =

37

78
≈ 0.474

You may make the following check for consistency:

< Sx >=

(
41

78
(
h̄

2
) +

37

78
(− h̄

2
)

)
=

1

39
h̄

The same result as in part a.

3. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
x = r sin θ sinφ, z = r cos θ and hence zx = r2 cos θ sin θ(eiφ + e−iφ)/2 using the Euler relations)
the appropriate spherical harmonics can now be identified and we arrive at

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = N
r2

2

√
8π

15
(−Y2,1 + Y2,−1)e−r/3a0 . (2)
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As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is one. For the
operator Lz we note the two spherical harmonics have the same pre factor (one has -1 and the
other has +1 but the absolute value square is the same) ie they will have the same probability.
The probability to find m = 2h̄ is 0, for m = 1h̄ is 1

2
, for m = 0h̄ is 0 for m = −1h̄ is 1

2
, and for

m = −2h̄ is 0. As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is
one.

b. To calculate the expectation value < r > we need to normalise the given wave function if we
wish to do the integral. In order to achieve this in a simple way is to identify the radial wave
function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or
equal to 3. By inspection of eq (2) and 2 we find n = 3 this function has the correct exponential

and the correct power of r (r2) and hence R3,2(r) = 2
√

2
27
√

5

(
Z

3a0

)3/2 (
Zr
a0

)2
e−Zr/3a0 . We also note

that Y2,1 and Y2,−1 are normalised but the sum (−Y2,1 + Y2,−1) is not normalised. The sum has
to be changed to (− 1√

2
Y2,1 + 1√

2
Y2,−1) in order to be normalised. Note that R3,2(r) contains an

r2 term as also a e−r/3a0 term. The wave function can now be completed to the following
normalized wave function (note that we do not need to calculate the constant N as all separate
parts of ψ(r) are normalised by them selves)

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = R3,2(r)(− 1√
2
Y2,1 +

1√
2
Y2,−1)

From physics handbook page 292 you find

〈r〉 =
1

2

[
3n2 − l(l + 1)

] (a0

Z

)
=

1

2

[
3 32 − 2(2 + 1)

] (a0

1

)
=

21

2
a0 =

10.5 · 0.5292 Å = 5.56 Å.

You may also do the integral directly like this:

〈r〉 =
∫ ∞

0

∫ π

0

∫ 2π

0
dφ dθ dr r2 sin(θ) r | R3,2(r) |2 |

(
− 1√

2
Y2,1 +

1√
2
Y2,−1

)
|2 =

∫ ∞
0

dr r3 | R3,2(r) |2=
21

2
a0 = 10.5 · 0.5292 Å = 5.56 Å.

4. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− h̄2

2m

d2

dx2
Ψ(x, y)− h̄2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− h̄2

2m

d2

dx2
ψx(x)− h̄2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− h̄2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

h̄2
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Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(
Ψ(−a

2
) = Ψ(a

2
) = 0

)
into

account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the

condition
∫ a/2
−a/2 | Ψ |2 dx = 1. The condition sin(ka

2
) = 0 gives ka

2
= π

2
∗ (even− integer). The

solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 2, 4, 6, ... (3)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√
2

a
cos(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 3, 5, ... (4)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (5)

In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (6)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√
2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (7)

ψn(x) =
√

2
a

sin(nπx
a

+ nπ
2

) =
√

2
a

(
sin(nπx

a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)
. We see that we recover

the solution in eq (3), (4) and (5) as we let n run from 1 to ∞.

b) Now we turn to the question of parity, ie whether the wave function is odd or even under a
change of coordinates from (x, y) to (−x,−y). The one dimensional eigenfunctions in eq (3) and
(4) have a definite parity. The functions in (3) are odd whereas the functions in (4) are even. As
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the eigenstates for the 2 dimensional system are formed from eq (5) ie products of functions that
are even or odd the total function itself will be either even or odd as well.

The four lowest eigenenergies are given by

En,m =
π2h̄2

2Ma2
(n2 +m2), where the 4 lowest are (n2 +m2) = 2, 5, 8, 10.

When we form the eigenstates we need to keep track of the parity of the ψn(x) and ψm(y). It is
therefore necessary to have the functions in the form like in eq (3) and (4) to identify the parity
as odd or even. This is difficult if you try with functions like eq (7) even though it is a correct
eigenstate it is hard to identify their parity.

E1,1 = one state (n2 +m2 = 2) even * even = even

E1,2 = E2,1 = two states (n2 +m2 = 5) odd * even = odd

E2,2 = one state (n2 +m2 = 8) odd * odd = even

E1,3 = E3,1 = two states (n2 +m2 = 10) even * even = even

So of the four energys (states) only one is odd and three are even.

5. The task is to calculate the change of the difference between two energy levels (ground state E0

and first excited state E1) for a harmonic oscillator due to a perturbation H1 to the potential.

E1
1 − E1

0 = E1 + 〈1 | H1 | 1〉 −
(
E0 + 〈0 | H1 | 0〉

)
The two harmonic oscillator eigenfunctions that are of interest are :

ψ0(x) =

√
α√
π
e−

1
2
α2x2 and ψ1(x) =

√
α

2
√
π

2αx e−
1
2
α2x2 where α =

√
mω

h̄

The first integral to calculate (use integration by parts) will be for the change of the ground
state energy

〈0 | H1 | 0〉 =
∫
ψ∗0(x)H1ψ0(x)dx =

∫ α√
π
Ax4 e−α

2x2dx = [αx = y] =
A

α4
√
π

∫
y4 e−y

2

dy

where the integral taken separately will be

∫ ∞
−∞

y4 e−y
2

dy = [−y
3

2
e−y

2

]∞−∞ +
∫ ∞
−∞

3y2

2
e−y

2

= [−3y1

4
e−y

2

]∞−∞ +
∫ ∞
−∞

3

4
e−y

2

=
3

4

√
π

Hence the shift of the ground state energy will be

〈0 | H1 | 0〉 =
A

α4
√
π

3

4

√
π =

3A

4α4
=

3A

4

(
h̄

mω

)2

The second integral to calculate (use integration by parts) will be for the change of the energy of
the lowest excited state.

〈1 | H1 | 1〉 =
∫
ψ∗1(x)H1ψ1(x)dx =

∫ α

2
√
π
Ax4 4α2x2e−α

2x2dx = [αx = y] =
4A

α4
√
π

∫
y6 e−y

2

dy
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where the integral taken separately will be

∫ ∞
−∞

y6 e−y
2

dy = [−y
5

2
e−y

2

]∞−∞ +
∫ ∞
−∞

5y4

2
e−y

2

= [−5y3

4
e−y

2

]∞−∞ +
∫ ∞
−∞

15y2

4
e−y

2

=

= [−15y1

8
e−y

2

]∞−∞ +
∫ ∞
−∞

15

8
e−y

2

=
15

8

√
π

Hence the shift of the energy of the lowest excited state will be

〈1 | H1 | 1〉 =
4A

α4
√
π

15

8

√
π =

15A

2α4
=

15A

2

(
h̄

mω

)2

The difference in the perturbed energys will be

E1
1 − E1

0 =
3

2
h̄ω +

15A

2α4
− (

1

2
h̄ω +

3A

4α4
) = h̄ω +

27A

4α4
= h̄ω +

27A

4

(
h̄

mω

)2

Note that the constant A has dimension.
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