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The solutions are just suggestions. They may contain several alternative routes.

1. A measurement of the spin component in the direction n̂ = x̂ sin(ϕ) + ŷ cos(ϕ) gives the value
−h̄/2. The spin operator Sn̂ = n̂ · (Sx, Sy, Sz) is

Sn̂ =
h̄

2

(
0 sinϕ− i cosϕ

sinϕ+ i cosϕ 0

)
=
h̄

2

(
0 −ieiϕ

ie−iϕ 0

)
=
−ih̄

2

(
0 eiϕ

−e−iϕ 0

)

The eigenvalue equation is

Sn̂χ = λχ⇔ ih̄

2

(
0 −eiϕ
e−iϕ 0

)(
a
b

)
= λ

(
a
b

)
(1)

We find the eigenvalues from∣∣∣∣∣ −λ −ih̄
2
eiϕ

ih̄
2
e−iϕ −λ

∣∣∣∣∣ = 0 ⇒ λ2 − (
h̄

2
)2 = 0 ⇒ λ = ± h̄

2

(a) The spin state corresponding to λ = −h̄/2 must satisfy the eigenvalue equation Eq. (1).
This yields two equations that are liniearly dependent. Take any of these, say iae−iϕ = −b
and choose a = 1 and hence:

χn̂− = C

(
1

−ie−iϕ
)
⇒ χn̂− =

1√
2

(
1

−ie−iϕ
)
, or differently

1√
2

(
ieiϕ

1

)
,

where the normalization condition |a|2 + |b|2 = 1 was used in the last step. Other correct
solutions can be found by a multiplication with an arbitrary phase factor eiα.

N.B. this is for the other eigenvalue λ = +h̄/2, not an answer to the question.
The spin state corresponding to λ = h̄/2 must satisfy the eigenvalue equation Eq. (1). This
yields two equations that are liniearly dependent. Take any of these, say iae−iϕ = b and
choose a = 1 and hence:

χn̂+ = C

(
1

ie−iϕ

)
⇒ χn̂+ =

1√
2

(
1

ie−iϕ

)
, or differently

1√
2

(
−ie−iϕ

1

)
,

where the normalization condition |a|2 + |b|2 = 1 was used in the last step. Other correct
solutions can be found by a multiplication with an arbitrary phase factor eiα.

(b) A general spin state (for the z–direction) can be written as χz = aχz+ + bχz−, where

χz+ =

(
1
0

)
is the spin up and χz− =

(
0
1

)
is the spin down spinor in the z-direction. The

outcomes of a measurement will be: For χn̂− we find that the probability to measure spin
up, i.e. Sz = h̄/2 is |a|2 = | − e−iϕ/

√
2|2 = 1/2, and that the probability to measure spin

down, i.e. Sz = −h̄/2 is |b|2 = |1/
√

2|2 = 1/2.

(c) We would get 50% up and 50% down in the n̂ direction. The reason is that the states (in
b) we start from are eigenstates of Sz and this operator is not present in Sn̂. Had Sz been
part of Sn̂ there would be a bias.
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2. (a) The parity of a hydrogen eigenfunction ψnlml
(r) is given by (−1)l. The given wave function

Ψ(r) consists of eigenfunctions with the same parity. Hence Ψ(r) has a definite parity.

(b) The probability is given by the absolute square of the coefficients.
(Ψ(r, t = 0) = 1√

15
(3ψ100(r)− 2ψ200(r) + ψ320(r)− ψ322(r)))

The probabilities are (in order) 9
15

, 4
15

, 1
15

, 1
15

. as a check they sum up to 1 as they should
do.

(c) The energy of a single eigenstate is given by: En = −13.56
n2 eV. The expectation value is

given by < E >= 9
15

(−13.56
12

) + 4
15

(−13.56
22

) + 1
15

(−13.56
32

) + 1
15

(−13.56
32

) =
−13.56( 9

15
+ 4

60
+ 1

135
+ 1

135
) = −9.240889 ≈ −9.24 eV

The operator L2 has eigenvalues h̄2l(l + 1). The expectation value is given by
< L2 >= 9

15
· 0 + 4

15
· 0 + 1

15
(h̄22(2 + 1)) + 1

15
(h̄22(2 + 1)) = 12

15
h̄2 = 4

5
h̄2

The operator Lz has eigenvalues h̄ml. The expectation value is given by
< Lz >= 9

15
· 0 + 4

15
· 0 + 1

15
· 0 + 1

15
(h̄2) = 2

15
h̄

3. (a) The mean position of the particle is

< x >=
∫ ∞
−∞

ψ∗(x)xψ∗(x)dx =
γ√
π

∫ ∞
−∞

xe−γ
2x2dx = 0

(b) The mean momentum of the particle is

< p >=
∫ ∞
−∞

ψ∗(x)
h̄

i
(
d

dx
ψ(x))dx =

γh̄√
iπ

∫ ∞
−∞

e−γ
2x2/2 d

dx
e−γ

2x2/2dx = 0

(c) The Schrödinger equation (
− h̄2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x)

can be written as

− h̄2

2m

d2

dx2
ψ(x) = [E − V (x)]ψ(x).

As

− h̄2

2m

d2

dx2
e−γ

2x2/2 = − h̄2

2m
(−γ2 + γ4x2)e−γ

2x2/2

we have

E − V (x) = − h̄2

2m
(−γ2 + γ4x2)

or

V (x) =
h̄2

2m
(−γ2 + γ4x2) +

h̄2γ2

2m
=
h̄2γ4x2

2m

4. a) There are 4 states the system can have with the energys and (degeneracys) h̄ω (1), 2h̄ω (2)
and 3h̄ω (1). The partition sum is given by:

Z =
n1=1,n2=1∑
n1=0,n2=0

e−(n1+n2+1.0)h̄ω/kBT = e−1.0h̄ω/kBT + 2e−2.0h̄ω/kBT + e−3.0h̄ω/kBT
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b) There is one state of the lower energy and two states with the next higher energy. The
probability to find the system in a state of energy is proportional to the Boltzmann factor,
we arrive at the following equation.

1e−1,0h̄ω/kBT

Z
=

2e−2,0h̄ω/kBT

Z
(2)

and e1h̄ω/kBT = 2 which evaluates to T = 1h̄ω
kB ln 2

.

c) The partition sum at this specific temperature is given by: (kBT = 1h̄ω
ln 2

) ( 1
kBT

= ln 2
1h̄ω

) we
arrive at the following

Z = e−1.0h̄ω/kBT + 2e−2.0h̄ω/kBT + e−3.0h̄ω/kBT = e−1.0 ln 2 + 2e−2.0 ln 2 + e−3.0 ln 2 =

1

2
+ 2

1

4
+

1

8
=

1

2
+

1

2
+

1

8
= 1 +

1

8
=

9

8

The probability P will be (put Z into one of the terms in eq (2).

P =
e−1,0 ln 2

9
8

=
1

2
· 8

9
=

4

9
≈ 0.444...

As a check we can calculate for the state with the highest energy

P3 =
e−3,0 ln 2

9
8

=
1

8
· 8

9
=

1

9
≈ 0.111...

and we can easily conclude the probabilities add up to one.

5. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− h̄2

2m

d2

dx2
Ψ(x, y)− h̄2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− h̄2

2m

d2

dx2
ψx(x)− h̄2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− h̄2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

h̄2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(
Ψ(−a

2
) = Ψ(a

2
) = 0

)
into

account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with
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A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the

condition
∫ a/2
−a/2 | Ψ |2 dx = 1. The condition sin(ka

2
) = 0 gives ka

2
= π

2
∗ (even− integer). The

solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 2, 4, 6, ... (3)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√
2

a
cos(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 3, 5, ... (4)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (5)

In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (6)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√
2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (7)

ψn(x) =
√

2
a

sin(nπx
a

+ nπ
2

) =
√

2
a

(
sin(nπx

a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)
. We see that we recover

the solution in eq (3), (4) and (5) as we let n run from 1 to ∞.

b) The ground state eigenfunction is given by (using eq. (4))

Ψn=1,m=1(x, y) = ψ1(x) · ψ1(y) =

√
2

a
cos(

πx

a
) ·
√

2

a
cos(

πy

a
) (8)

The next lowest state eigenfunction is given by (using eq. (4) and (3)). Note there are two
eigenfunctions with the same energy (Ψn=1,m=2(x, y)) you may use either one of them.

Ψn=2,m=1(x, y) = ψ2(x) · ψ1(y) =

√
2

a
sin(2

πx

a
) ·
√

2

a
cos(

πy

a
) (9)

Orthogonality is defined as∫
x

∫
y

Ψn1,m1(x, y)Ψn2,m2(x, y) = δn1,n2 δm1,m2 (10)
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by explicit calculation∫ a/2

x=−a/2

∫ a/2

y=−a/2

(
2

a
cos(

πx

a
) · cos(

πy

a
)
)
·
(

2

a
sin(2

πx

a
) · cos(

πy

a
)
)

= calculations = 0 (11)

this is a separable integral (in x and y), suggestion do the integral in x first as this will be zero
as they belong to different eigenvalues. Thus the calculation ends with a zero as it should.
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