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1. (a) ih̄ ∂2

∂t2
cosωt = −ih̄ω ∂

∂t
sinωt = −ih̄ω2 cosωt YES

(b) ∂
∂x
eikx = ikeikx YES

(c) ∂
∂x
e−ax

2
= −2axe−ax

2
NO

(d) ∂
∂x

cos kx = −k sin kx NO

(e) ∂
∂x
kx = k NO

(f) P̂ sin(kx) = sin(−kx) = − sin(kx) YES

(g) −ih̄ ∂
∂z
C(1 + z2) = −ih̄C(0 + 2z) NO

(h) − h̄
2
∂
∂z
Ce−3z = − h̄

2
C(−3)e−3z ∝ ψ(z) YES

(i) C
2

(z2 − ∂2

∂z2 )ze−
1
2
z2

=? This has to be done in some steps. Start by doing this derivative

first: − ∂2

∂z2 ze
− 1

2
z2

= − ∂
∂z

(e−
1
2
z2 − z2e−

1
2
z2

) = −(−ze− 1
2
z2 − 2ze−

1
2
z2

+ z3e−
1
2
z2

) =

3ze−
1
2
z2 − z3e−

1
2
z2

.

Now you go back to the start: C
2

(z2 − ∂2

∂z2 )ze−
1
2
z2

= C
2

(z3e−
1
2
z2

+ 3ze−
1
2
z2 − z3e−

1
2
z2

) =
C
2

(+3ze−
1
2
z2

) = ∝ ψ(z) YES

2. The task is to calculate the change of the energy levels (ground state E0 and first excited state
E1) for a harmonic oscillator due to a perturbation H1 to the potential.

The two harmonic oscillator eigenfunctions that are of interest are :

ψ0(x) =

√
α√
π
e−

1
2
α2x2

and ψ1(x) =

√
α

2
√
π

2αx e−
1
2
α2x2

where α =

√
mω

h̄

(a) Here we have a perturbation γx4 where γ is small in some sence. The first integral to
calculate (use integration by parts) will be for the change of the ground state energy

〈0 | γx4 | 0〉 =
∫
ψ∗0(x)γx4ψ0(x)dx =

∫ α√
π
γx4 e−α

2x2

dx = [αx = y] =
γ

α4
√
π

∫
y4 e−y

2

dy

where the integral taken separately will be∫ ∞
−∞

y4 e−y
2

dy = [−y
3

2
e−y

2

]∞−∞ +
∫ ∞
−∞

3y2

2
e−y

2

= [−3y1

4
e−y

2

]∞−∞ +
∫ ∞
−∞

3

4
e−y

2

=
3

4

√
π

Hence the shift of the ground state energy will be

〈0 | γx4 | 0〉 =
γ

α4
√
π

3

4

√
π =

3γ

4α4
=

3γ

4

(
h̄

mω

)2

The energy of the unperturbed groundstate is E0 = h̄ω
2

. Hence the energy of the perturbed
groundstate is

E
perturbed
0 =

h̄ω

2
+

3γ

4

(
h̄

mω

)2
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(b) Here we have a perturbation εx where ε is small in some sence. The integrals to be
calculated are 〈0 | εx | 0〉 and 〈1 | εx | 1〉. The squares of both eigenfunctions are even
functions and as the perturbation is odd both integrals will be zero.

Hence there is no change in energy to first order.

3. The eigenfunctions and eigenvalues of the free-particle Hamiltonian are found by solving the
time-independent Schrödinger equation

− h̄2

2m

d2u(x)

dx2
+ V (x)u(x) = Eu(x),

with V (x) zero everywhere. Thus, the eigenvalue equation reads

d2u(x)

dx2
+ k2u(x) = 0,

where k2 = 2mE/h̄2. The eigenfunctions are given by the plane waves eikx and e−ikx, or linear
combinations of these, as e.g. sin kx and cos kx.

(a) The wave function of the particle at t = 0 is given by

ψ(x, 0) = cos3(kx) + sin3(kx).

This is not an eigenfunction in itself but it can be written as sum of eigenfunctions using
the Euler relations

ψ(x, 0) =

(
eikx + e−ikx

2

)3

+

(
eikx − e−ikx

2i

)3

= (1)

1

8

(
ei3kx + 3eikx + 3e−ikx + e−i3kx

)
− 1

8i

(
ei3kx − 3eikx + 3e−ikx − e−i3kx

)
= (2)

3

4
cos(kx) +

1

4
cos(3kx) +

3

4
sin(kx)− 1

4
sin(3kx) (3)

Thus, ψ(x, 0) can be written as a superposition of plane waves with two different values of
k1 = k and k2 = 3k.

(b) The energy of a plane wave eikx is given by E = h̄2k2/2m. Thus, the energy of eik1x (or
e−ik1x) is E1 = h̄2k2/2m and the energy of eik2x (or e−ik2x) is E2 = h̄2k2

2/2m = 9h̄2k2/2m.

(c) The function u(x) = eikx is a solution to the the time-independent Schrödinger equation.
The corresponding solutions to the time-dependent Schrödinger equation are given by
u(x)T (t),with T (t) = e−iEt/h̄. Therefore, u(x)T (t) = ei(kx−Et/h̄). A sum of solutions of this
form is also a solution, since the Schrödinger equation is linear. This means that if ψ(x, 0)
is given by equation (3), then the time dependent solution is given by

ψ(x, t) =
1

8

(
ei3kx + e−i3kx

)
e−iE2t/h̄ +

3

8

(
eikx + e−ikx

)
e−iE1t/h̄ + (4)

1

8i

(
ei3kx − e−i3kx

)
e−iE2t/h̄ − 3

8i

(
eikx − e−ikx

)
e−iE1t/h̄ (5)

where

E1 =
h̄2k2

2m
and E2 =

9h̄2k2

2m
(6)
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4. a The strategy is to rewrite the wave function as a series of eigenfunctions. The three harmonic
oscillator eigenfunctions (from PH) that are of interest are (evident from the powers of x present
in the wave function):

ψ0(x) =

√
α√
π
e−

1
2
α2x2

and ψ1(x) =

√
α

2
√
π

2αx e−
1
2
α2x2

ψ2(x) =

√
α

8
√
π

(4α2x2 − 2) e−
1
2
α2x2

where α =

√
mω

h̄

Start by making a change of variables:

y =

√
mω

h̄
x = αx and α =

√
mω

h̄

With this change the eigenfunctions become:

ψ0(y) =

√
α√
π
e−

1
2
y2

; ψ1(y) =

√
α

2
√
π

2y e−
1
2
y2

; ψ2(y) =

√
α

8
√
π

(4y2 − 2) e−
1
2
y2

Start with the wavefunction:

Ψ(x, t = 0) = A
(

1 + 2

√
mω

h̄
x
)2

e−
mω
2h̄
x2

= A(1− 2y)2e−y
2/2 = A(1− 4y + 4y2)e−y

2/2

Start with the y2 term:

ψ2(y) =

√
α

8
√
π

(4y2 − 2) e−
1
2
y2

transforms to (4y2 − 2) e−
1
2
y2

=

√
8
√
π

α
ψ2(y)

In a similar way we rewrite the two others

2y e−
1
2
y2

=

√
2
√
π

α
ψ1(y) and e−

1
2
y2

=

√√
π

α
ψ0(y)

Now we are ready to make an identifacation like: This we can identify in the following manner:

Ψ(x, t = 0) = C0ψ0(x) + C1ψ1(x) + C2ψ2(x)

Ψ(x, t = 0) = A(1−4y+4y2)e−y
2/2 = A(

√√
π

α
ψ0(y)−2

√
2
√
π

α
ψ1(y)+

√
8
√
π

α
ψ2(y)+2

√√
π

α
ψ0(y))

Ψ(x, t = 0) = A(3

√√
π

α
ψ0(y)− 2

√
2
√
π

α
ψ1(y) +

√
8
√
π

α
ψ2(y))

In order to calculate the expecation value of the energy we need to normalize the wavefunction.

A2(32

√
π

α
+ 22 2

√
π

α
+

8
√
π

α
) = 1

A2(9 + 8 + 8) = A225 =
α√
π

3



Solving for A gives

A =

√
α

25
√
π

Ψ(x, t = 0) =

√
α

25
√
π

3

√√
π

α
ψ0(y)− 2

√
2
√
π

α
ψ1(y) +

√
8
√
π

α
ψ2(y)


And finally the wavefunction is expressed in terms of eigenfunctions

Ψ(x, t = 0) =
3

5
ψ0(y)−

√
8

25
ψ1(y) +

√
8

25
ψ2(y)

Now we can calculate the expecation value of the energy as

E = 〈H〉 =
9

25

h̄ω

2
+

8

25

3h̄ω

2
+

8

25

5h̄ω

2
=

73h̄ω

50

b The general expresssion for Ψ(x, t) is Ψ(x, t) =
∑∞
n=0 cnψn(x)e−iEnt/h̄ as En = (n+ 1

2
)h̄ω we get

Ψ(x, t) =
3

5
ψ0(y)e−iωt/2 −

√
8

25
ψ1(y)e−i3ωt/2 +

√
8

25
ψ2(y)e−i5ωt/2 =

e−iωt/2

3

5
ψ0(y)−

√
8

25
ψ1(y)e−iωt +

√
8

25
ψ2(y)e−i2ωt


The important issue is to change the negative sign to a positive ie. e−iωt = 1 and hence
ωT = mπ and the smallest non zero time is therefore T = π/ω. (The second term e−i2ωt is
allways 1 under this condition. The smallest time is

T =
π

ω

5. (a) 〈H〉 = 1
2
0.25 + 1

4
0.95 + 1

6
2.12 + 1

24
3.23 + 1

24
4.79 = 1.05000 ≈ 1.05eV.

Uncertainty is defined by: 〈∆H〉 =
√
〈H2〉 − 〈H〉2

〈H2〉 = 1
2
0.252 + 1

4
0.952 + 1

6
2.122 + 1

24
3.232 + 1

24
4.792 = 2.39665 ≈ 2.40eV2.

〈∆H〉 =
√

2.39665− 1.052 = 1.1376 ≈ 1.14eV

(b) The expression is not unique as we only know the probabilities which are the squares of the
coefficients. In the evaluation of 〈H〉 and 〈H2〉 only the probabilities are important thats
why a different sign ± is of no importance in this calculation.

One is: Ψ(z) = 1√
2
ψ1(z) +

√
1
4
ψ2(z) + 1√

6
ψ3(z) +

√
1

24
ψ4(z) + 1

24
ψ5(z).

Another is: Ψ(z) = 1√
2
ψ1(z) +

√
1
4
ψ2(z)− 1√

6
ψ3(z)−

√
1

24
ψ4(z) + 1

24
ψ5(z).

(c) It would be lowered by a factor of 9. (All eigenvalues change by a factor of 9)
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