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The solutions are just suggestions. They may contain several alternative routes.

1. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in

terms of eigenfunctions. The eigenfunctions are (PH) ψ(x) =
√

2
a

sin(nπx
a

). We can directly
conclude that the given wave function consists of eigenfunctions with n = 1 and n = 5, we
can write:

ψ(x, 0) =
A
√

2√
2a

sin
(
πx

a

)
+

√
2√

2 · 5a
sin

(
5πx

a

)
=

A√
2
ψ1(x, 0) +

1√
10
ψ5(x, 0)

As both eigenfunctions are orthonormal the normalisation integral reduces to A2

2
+ 1

10
= 1

and hence A =
√

18
10

=
√

9
5

= 3√
5

(b) The wave function contains only n = 1 and n = 5 eigenfunctions and therefore the only

possible outcomes of an energy meassurement are E1 = h̄2π2

2ma2 with probability A2

2
= 0.9 and

E5 = h̄2π2

2ma2 25 with probability 1 - 0.9 = 0.1 . The average energy is given by

< E >= 0.9E1 + 0.1E5 = h̄2π2

2ma2 (0.9 + 0.1 · 25) = 3.4 · h̄2π2

2ma2 = 1.7 · h̄2π2

ma2

(c) The time dependent solution is given by Ψ(x, t) =
∑∞
n=1 cnψn(x)e−iEnt/h̄ and hence

Ψ(x, t) =

√
9

10
ψ1(x, 0)e−i

h̄π2t
2ma2 +

1√
10
ψ5(x, 0)e−i

25h̄π2t
2ma2

2. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
x = r sin θ sinφ, z = r cos θ and hence zx = r2 cos θ sin θ(eiφ + e−iφ)/2 using the Euler relations)
the appropriate spherical harmonics can now be identified and we arrive at

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = N
r2

2

√
8π

15
(−Y2,1 + Y2,−1)e−r/3a0 . (1)

As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is one. For the
operator Lz we note the two spherical harmonics have the same pre factor (one has -1 and the
other has +1 but the absolute value square is the same) ie they will have the same probability.
The probability to find m = 2h̄ is 0, for m = 1h̄ is 1

2
, for m = 0h̄ is 0 for m = −1h̄ is 1

2
, and for

m = −2h̄ is 0. As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is
one.

b. To calculate the expectation value < r > we need to normalise the given wave function if we
wish to do the integral. In order to achieve this in a simple way is to identify the radial wave
function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or
equal to 3. By inspection of eq (1) and 2 we find n = 3 this function has the correct exponential

and the correct power of r (r2) and hence R3,2(r) = 2
√

2
27
√

5

(
Z

3a0

)3/2 (
Zr
a0

)2
e−Zr/3a0 . We also note

that Y2,1 and Y2,−1 are normalised but the sum (−Y2,1 + Y2,−1) is not normalised. The sum has
to be changed to (− 1√

2
Y2,1 + 1√

2
Y2,−1) in order to be normalised. Note that R3,2(r) contains an

r2 term as also a e−r/3a0 term. The wave function can now be completed to the following
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normalized wave function (note that we do not need to calculate the constant N as all separate
parts of ψ(r) are normalised by them selves)

ψ(r) = ψ(x, y, z) = N(zx)e−r/3a0 = R3,2(r)

(
− 1√

2
Y2,1 +

1√
2
Y2,−1

)

From physics handbook page 292 you find

〈r〉 =
1

2

[
3n2 − l(l + 1)

] (a0

Z

)
=

1

2

[
3 32 − 2(2 + 1)

] (a0

1

)
=

21

2
a0 =

10.5 · 0.5292 Å = 5.56 Å.

You may also do the integral directly like this:

〈r〉 =
∫ ∞

0

∫ π

0

∫ 2π

0
dφ dθ dr r2 sin(θ) r | R3,2(r) |2 |

(
− 1√

2
Y2,1 +

1√
2
Y2,−1

)
|2 =

∫ ∞
0

dr r3 | R3,2(r) |2=
21

2
a0 = 10.5 · 0.5292 Å = 5.56 Å.

3. (a) There are two ways to reach a solution for this. The usual rule for the vibrational transition
is ∆n = ±1 and this would correspond to a photon of energy hν1 = h̄ω, note only
approximately as we also need a change in the rotational quantum number l. Here we also
allow for anharmonic transitions ∆n = ±2 corresponding to photons of energy hν2 = 2h̄ω.
Considering the relation between wavelength and frequency for an electromagnetic wave
the photon of frequency ν2 will have only half the wavelength compared to the ν1 photon.
Hence the upper is the anharmonic transition and the lower is the harmonic transition.

The second route is to note that the anharmonic transitions are much rarer. Comparing
the scales for the intensity we note that the lower has an intensity of more than a factor of
1000 larger than the upper spectra. Hence events contributing to the upper spectra are
much rarer compared to events contributing to the lower spectra. We can draw the same
conclusion the upper is the anharmonic transition and the lower is the harmonic transition.

After this we do not need to consider the upper anharmonic spectra any more.

(b) Take data from the lower spectra as this is for the harmonic transitions.

The energy levels of a molecule, due to vibrations and rotation, are given by
En,l = (n+ 1

2
)h̄ω+ h̄2

2I
l(l+ 1). The selection rule for a dipole transition is to change l by one

unit ∆l = ±1. In figure 1 a principal layout of the levels is shown. We first need to
establish the relation between the spectra and the energy levels. For the lower spectra (of
the problem) we have ∆n = −1 (minus sign = emission spectra) and two possible ∆l = ±1.

We start with an analysis of the transitions between energy levels.

One series has ∆n = −1,∆l = −1: Ie a change from a level with l + 1 to a level with l.

The energy difference will be
∆E = h̄ω + h̄2

2I
(l + 1)(l + 2)− h̄2

2I
l(l + 1) = h̄2

I
(l + 1), l = 0, 1, 2, 3, which gives the following

energies (for photons):

h̄ω + h̄2

I
, h̄ω + 2 h̄

2

I
, h̄ω + 3 h̄

2

I
, h̄ω + 4 h̄

2

I
, ...

A similar analysis gives the other series ∆n = −1,∆l = +1 (l→ l + 1):

h̄ω − h̄2

I
, h̄ω − 2 h̄

2

I
, h̄ω − 3 h̄

2

I
, h̄ω − 4 h̄

2

I
, ...
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Figure 1: Energy levels for a diatomic molecule. The long horisontal lines mark the l = 0 levels, with the
vibrational quantum number n to the right. The spacing in energy between these lines is h̄ω. The states
with higher l-values (the rotational bands) give a dense sequence of states for each n-value. The arrows
show two possible transitions, one harmonic (n = 2→ n = 1) and one anharmonic (n = 2→ n = 0).

All these energy differences will appear in the spectra. It is also clear that there is always a
change in the rotational quantum number l. It therefore seems as if there is a line missing
for the unalowed transition ∆l = 0 in the spectrum corresponding to the energy h̄ω

The strength of the coupling constant is embedded in the in the frequency ω of the
oscillator, given by the missing line.

Extrapolate the ’wave length’ of the missing line: λ = 3.9 + 4.0−3.9
20.5

2.05 = 3.91µm. The
energy of the missing line corresponds to h̄ω of the oscillator. The strength k of the bond is

from ω =
√
k/µ where µ is the reduced mass. For hydrogen bromide we have

µ = 1.00798·79.904
1.00798+79.904

= 0.99542u = 0.99542 · 1.660538 · 10−27 = 1.6529 · 10−27 kg.

For the strength of the bond we evaluate k = ω2µ = 4π2 c2

λ2µ =

4π2( 2.998·108

3.91·10−6 )21.6529 · 10−27 = 0.38363 kN/m ≈ 0.384 kN/m.

(c) The missing line would represent a transition with no change of the rotational quantum
number l, ie ∆l = 0. This is not allowed according to the selection rule that states that
∆l = ±1.

4. a

The spinor is not normalised and we need to do this first:

1 = χ∗χ =| A |2 (2− 5i, 3 + i)

(
2 + 5i
3− i

)
=| A |2 | 2 + 5i |2 | 3− i |2 → A =

1√
39

Note an expectation value is always a real number, never a complex one! Even if you had taken
A to be a complex number like A = i√

39
it would not change the expectation value as the

expectation value below only involves | A |2.
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< Sx >=
1

39
(2− 5i, 3 + i)

h̄

2

(
0 1
1 0

)(
2 + 5i
3− i

)
=

1

39
h̄

< Sy >=
1

39
(2− 5i, 3 + i)

h̄

2

(
0 −i
i 0

)(
2 + 5i
3− i

)
= −17

39
h̄

< Sz >=
1

39
(2− 5i, 3 + i)

h̄

2

(
1 0
0 −1

)(
2 + 5i
3− i

)
=

19

78
h̄

b

Measurement along the x direction means: S = (1, 0, 0) · (Sx, Sy, Sz) = Sx. The idea is to expand
the initial spinor χ into the eigenspinors of Sx. So we start to calculate the eigenvalues and
eigenspinors to Sx. The spin operator Sx is

Sx =
h̄

2

(
0 1
1 0

)

we find the eigenvalues from the following equation

Snχ = λχ⇔ h̄

2

(
0 1
1 0

)(
a
b

)
= λ

(
a
b

)
(2)

We find the eigenvalues from the equation∣∣∣∣∣ −λ 1 h̄
2

1 h̄
2
−λ

∣∣∣∣∣ = 0⇒ λ = ± h̄
2

The eigenspinors to Sx corresponding to the + h̄
2

we get from

h̄

2

(
0 1
1 0

)(
a
b

)
= +

h̄

2

(
a
b

)

The two equations above are linearly dependent and one of them is

a = b⇔ let b = 1 and hence a = 1

This gives the unnormalised spinor(
1
1

)
and after normalisation we have χx+ =

1√
2

(
1
1

)

The other eigenspinor χx− has to be orthogonal to χx+. An appropriate choice is:

χx− =
1√
2

(
1
−1

)

This eigenspinor χx− is orthogonal to the eigenspinor χx+.
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Now we can expand the initial spinor χ in these eigenspinors of Sx.

χ =
1√
39

(
2 + 5i
3− i

)
= b+χx+ + b−χx−

The coefficient b+ is given by

b+ = χ∗x+χ =
1√
78

(1 1) ∗
(

2 + 5i
3− i

)
=

1√
78

(2 + 5i+ 3− i) =
1√
78

(5 + 4i)

A similar calculation gives b− :

b− = χ∗x+χ =
1√
78

(1 − 1) ∗
(

2 + 5i
3− i

)
=

1√
78

(2 + 5i− 3 + i) =
1√
78

(−1 + 6i)

We may now check that | b+ |2 + | b− |2= 1

| b+ |2 + | b− |2=
1

78
(25 + 16 + 1 + 36) = 1 ok

The probability (to get + h̄
2
) is given by |b+|2.

|b+|2 =
1

78
(25 + 16) =

41

78
≈ 0.526

and (to get − h̄
2
) is given by |b−|2.

|b−|2 =
1

78
(1 + 36) =

37

78
≈ 0.474

You may make the following check for consistency:

< Sx >=

(
41

78
(
h̄

2
) +

37

78
(− h̄

2
)

)
=

1

39
h̄

The same result as in part a.

5. The system is initially in its ground state. The initial state when the particle is under the
influence of a potential characterized by the frequency ω1 is the ground state ψ

(ω1)
0 . Immediately

after the change to ω2 we need to analyse the ’new’ system with the new eigenfunctions ψ
(ω2)
j .

The relation between the ’old’ and the ’new’ system is given by the completeness relation

ψ
(ω1)
0 =

∞∑
j=0

cjψ
(ω2)
j (3)

where the coefficients cj describe the spectral distribution for the new eigenstates in relation to
the initial. The probability to find the system in the state j is given by | cj |2. Here we will use

the ground state prior to the sudden change ψ
(ω1)
0 = 4

√
mω1

h̄π
e−

mω1x
2

h̄2 and also the ground and first

excited state after the change.

In a we have to calculate c0, which is given by the integral:

c0 =
∫ (

ψ
(ω2)
0

)∗
ψ

(ω1)
0 dx (4)
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The ground state wave function (after) is ψ
(ω2)
0 = 4

√
mω2

h̄π
e−

mω2x
2

h̄2 . Now calculate c0 according to

c0 =
∫

4

√
mω2

h̄π
e−

mω2x
2

h̄2 4

√
mω1

h̄π
e−

mω1x
2

h̄2 dx =
∫ √

m

h̄π
4
√
ω1ω2e

−m(ω1+ω2)x2

h̄2 dx (5)

Make a change of variables
√

m(ω1+ω2)
2h̄

x = y and dx =
√

2h̄
m(ω1+ω2)

dy.

c0 =
∫ √

m

h̄π

√
2h̄

m(ω1 + ω2)
4
√
ω1ω2e

−y2

dy = 4

√
4ω1ω2

(ω1 + ω2)2
(6)

The probability for the system to be in the new ground state is | c0 |2=
√

4ω1ω2

(ω1+ω2)2 . = 2
√
ω1ω2

(ω1+ω2)
.

In b) we have to make a similar calculation as in a). We can however note that the wave

function for the first excited state is ψ
(ω2)
1 = 4

√
mω2

h̄π

√
2mω2

h̄π
xe−

mω2x
2

h̄2 . This is however an odd

function and hence the integrand for c1 is odd and we arrive at c1 = 0.00
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