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The solutions are just suggestions. They may contain several alternative routes.

3 3 .
Yip = \/;COS(H) and Y41 =/ o sin(#)e*?

the wave function can be written as

1. (a) As

Y = 4171- (ei¢ sin(6) + cos(@)) g(r) = \/g(—\/éYLl +Yi0)g(r).

Hence the possible values of L. are +h and 0.
(b) Since

1 ) T 27 1 7
/ | |°= 47T/0 |l g(r) | r dr/o d9/0 (1 4 cos ¢ sin 26) sin Od¢ 2/ sinf df = 1,

0

the given wave function is normalised. The probability density is then given by P =| ¢ |2.
Thus the probability of L, = +% is | \/g ?= 2 and that of L, =0 is | \/g ?= 3.

(c) The expectation value of L, is

<L >=| @ 2 (+h)+ | ﬁ ?(0)=2h

2. The rotational and vibrational energy levels of a molecule are given by
2
Eny = (n+ $)hw+ 211+ 1). In an elctrical dipole transition the quantum number ! changes by
one unit Al = 41 as the photon carries an angular momentum.

I) If the vibrational state does not change (An = 0), we can observe radiation with the
following energies £, — By = E,, 111 — B, = Z—j(l + 1) +2) - Z—jl([ +1)= h—;(l +1),1=0,1,2,3,
which gives the following photon energies: hTQ, 2@;’ BFL—IQ, 45—12,

IT) If however the vibrational state changes by one unit An = —1 (note emission), we find two
series

one for An = —1, and Al = —1:

Ei—E;=Eppp1 — By = ho + % hw + 25w + 38 hw + 42

the second series for An = —1, and Al = +1:

Ey—E;=Ep— Byo1gp1 = ho — 2 hw — 28 iy — 3% iy — 422

Note that the spacing between the transition energies is of equal energy except for one. It seems
there is one transition energy missing corresponding to fiw. This transition would however
violate Al = +1.

The separation between the maxima corresponds to AE = h—; = heAX"! inserting the
appropriate data taken from graph AA~! = w = 20.67cm~!. Now we can calculate

I =puR?= % to arrive at R = ./m — 1.30A.



3. Hydrogenic atoms have eigenfunctions ¥, = Ru(r)Yim(0, ¢). Using the COLLECTION OF
FORMULAE we find

2
Uroo(r) = (T% Zr/ao
1/2 R
Yao(r) = (;{‘%) (1 _ %) Zr)2a0
2\ 1/2
%10(7‘) = (32Z7riz§) f—g CcoS He_ZT/QGO
/2 ,
Ya11(T) (%) / Zr sin fe*ive4r/2
0

where ag is the Bohr radius. The f-decay instantaneously changes Z =1 — Z = 2. According
to the expansion theorem, it is possible to express the wave function w;(7) before the decay as a
linear combination of eigenfunctions v;(r) after the decay as

uilr) = Y ajv;(r)

where
a; = /v;-‘(r)ui(r)dgr.
The probability to find the electron in state j is given by |a;|?.
(a) Here u; = 9100(Z = 1) and vj = 1hy9(Z = 2). This gives

1/2 3\ 1/2
1 2 oo 2
a = < 3> ( 3> / e~/ (1 — T) e~ /200 g2 gy
Tag 8mag 0 2aq
[e%S) 3
= e (- D= 2L (%) -2 (2)] -
ay Jo ao ap 2 ap \ 2 2
Thus, the probability is 1/4 = 0.25.
(b) For u; = ¢100(Z = 1) and vj = 1919(Z = 2) the #-integral is

/7r cos 0 sin 0df = 1/7T sin 20d0 = [— COZQQ] = 0.

0 2 Jo 0

For u; = 1100(Z = 1) and v; = ¥9141(Z = 2) the p-integral is

2 .
/ eF%dyp = 0.
0

Thus, the probability to find the electron in a 2p state is zero.
(c) Here u; = 1100(Z = 1) and v; = 9100(Z = 2). This gives

1/2 3 1/2
t ( ) ( ) / emrlo e mggy = V2 [ ten 2,
0 Ay

mag ra} 0

8vV2al > ., 8V2 o ., 8V2 oo 16v/2
eV T2y — SV ‘”d:—/2“d:—
a833/0€xx o7 Jo O T T o o T o7
Thus, the probability is 512/729 ~ 0.70233.

(The probability to find the electron in ©90(Z = 2) is 512/729 = 0.702. Therefore, the
electron is found with 95% probability in one of the states 1s or 2s.)
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(d)

No [ has to be less than n.

4. First choose a coordinate system. Let the direction of the incoming photon A be along the
x-axis’s positive direction and let the outgoing photon A nearly go out along the y-axis (15
degrees of) in positive direction.

We can start with the observation that as all momentum before the incident is in the positive
x-direction this has to be true also after the collision. So as momentum is conserved and the
outgoing photon )\ leaves in the positive y direction, we make the following conclusions about
the electron. The electron must have the same y-momentum in opposite direction to keep the
total y momentum zero. The momentum the electron obtains in the x-direction has to be the
difference between the incident photon and the outgoing photon’s momentum in the x-direction.

(a)

for Compton scattering we have the following relation \' — XA = -2 (1 — cos#).

eC

A= e = SEG TR0 — 1,240 - 107'm = 0.1240 A. The wave length of the
photon .

outgoing photon will be
—34
N o= )\ PlzeosTs) _ yy 6626110 7 (1—cosT5) _ 1 94, 10~11 + 1,798 - 10~!2 = 1.4198 - 10~ ''m

Mec 9.109-10-312.998-10° :_34 X
= 0.14198A. The energy is £ = 4¢ = 8:62040--299810° _ 1 3991 . 10~'4] = 87.336keV = 87.3
keV.
Another route to the energy may be: E' = hy/ = m where a = m]jCQ' The
q 1 b 0
dimensionless @ = —0010%1.60210°0 () 19567 and £’ = 100:10% = 87.3 keV.

9.109-10—31-(2.998-105)2

The energy of the electron will be: 100 - 87.3 = 12.7 keV.

140.19567(1—cos 75)

Use conservation of momentum. To calculate the recoil of the electron we have to calculate
the momentum of the photon h/A\.

0o _ ,1 electron

pg — pzl/ 4 pzlectron
Before the incident p) = $62810° 0 — 53435 . 10~ kg m/s and Py = 0.
After the event tl;f outgoing photon has: pl = SEIOT «in(75) = 45078 - 1072 kg m/s
and pl = 20207 cos(75) = 1.2079 - 107> kg m/s.

This yields for the electron peectron = p0 — pl = (5.3435 — 1.2079) - 10723 = 4.1356 - 102 kg

xT

m/s and plzlec”‘m = —p, = —4.5078 - 107** kg m/s. The angle of the recoil « is given by
electron
tana = iglecmn = fi%%g = —1.0900 which gives o = —47.5° (note sign).

Another way to calculate the angle ¢ of the recoiling electron is: Start with
cosf = m solving for ¢ yields tan ¢ = @ J:Q)Q . }fggzz and with 6§ = 75 we arrive

at tan ¢ = 1.089954 and hence ¢ = 47.46.

We can corroborate the result in b) in the following way: The length of the electrons
momentum vector is peectror = \/4.13562 + 4.50782 - 10723 = 6.1174 - 10723 kg m/s. The
kinetic energy of the electron can also be calculated from

Egin = p?/2m = (6.1174 - 10723)2/(2-9.109 - 1073!) = 2.0542 - 10715J = 12.8keV, the same
result as in b) (well nearly).

5. A measurement of the spin component in the direction 1 = Z sin(p) + g cos(¢) gives the value
—h/2 (or +h/2 depending of version of problem).



The

The

spin operator Sy = n - (Sy, Sy, S,) is

o h 0 sing —icosp \ _ N 0 —ie®\ _ —ih 0 e
"9\ sing +icosyp 0 2 \lde™ 0 92 —e7% 0

eigenvalue equation is

sc=we 2 (0 Y ()= (1) 0

We find the eigenvalues from

(a)

-\ —ih pip A A
. . 2 = 2 _ 5y —

The spin state corresponding to A = —h/2 must satisfy the eigenvalue equation Eq. (1).
This yields two equations that are liniearly dependent. Take any of these, say iae™" = —b
and choose a = 1 and hence:

1 1 1 . 1 [ ie*
X =C ( iy ) = Xn— = ﬁ ( _je—iv ) , or differently ﬁ ( 1 ) ,

where the normalization condition |a|? + |b|> = 1 was used in the last step. Other correct
solutions can be found by a multiplication with an arbitrary phase factor ™.

N.B. this is for the other eigenvalue A = +h/2, an answer to the + version of the
question. The spin state corresponding to A = h/2 must satisfy the eigenvalue equation
Eq. (1). This yields two equations that are liniearly dependent. Take any of these, say
iae™ = b and choose a = 1 and hence:

1 1 1 : 1 —ie”
xa+ =C ( ie—i® ) = Xa+ = ﬁ ( ie— ) , or differently E ( 1 ) )

where the normalization condition |a|* + [b|* = 1 was used in the last step. Other correct
solutions can be found by a multiplication with an arbitrary phase factor e'®.

A general spin state (for the z-direction) can be written as x* = ax3 + bx*, where

X5 = ( 0 ) is the spin up and x* = < (1) ) is the spin down spinor in the z-direction. The
outcomes of a measurement will be: For x;_ we find that the probability to measure spin
up, i.e. S, =h/2is |a|? = | — e7%/+/2|?> = 1/2, and that the probability to measure spin
down, i.e. S, = —h/21is |b]> = [1/v2]> = 1/2.

We would get 50% up and 50% down in the 7 direction. The reason is that the states (in

b) we start from are eigenstates of S, and this operator is not present in S;. Had S, been
part of S; there would be a bias.



