LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics F0047T

Examination date: 2015-03-17
The solutions are just suggestions. They may contain several alternative routes.

1. (a) As

$$
Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos (\theta) \quad \text { and } \quad Y_{1, \pm 1}=\sqrt{\frac{3}{8 \pi}} \sin (\theta) e^{ \pm \phi}
$$

the wave function can be written as

$$
\psi=\frac{1}{4 \pi}\left(e^{i \phi} \sin (\theta)+\cos (\theta)\right) g(r)=\sqrt{\frac{1}{3}}\left(-\sqrt{2} Y_{1,1}+Y_{1,0}\right) g(r)
$$

Hence the possible values of L_{z} are $+\hbar$ and 0 .
(b) Since

$$
\int|\psi|^{2}=\frac{1}{4 \pi} \int_{0}^{\infty}|g(r)|^{2} r^{2} d r \int_{0}^{\pi} d \theta \int_{0}^{2 \pi}(1+\cos \phi \sin 2 \theta) \sin \theta d \phi=\frac{1}{2} \int_{0}^{\pi} \sin \theta d \theta=1
$$

the given wave function is normalised. The probability density is then given by $P=|\psi|^{2}$. Thus the probability of $L_{z}=+\hbar$ is $\left|\sqrt{\frac{2}{3}}\right|^{2}=\frac{2}{3}$ and that of $L_{z}=0$ is $\left|\sqrt{\frac{1}{3}}\right|^{2}=\frac{1}{3}$.
(c) The expectation value of L_{z} is

$$
<L_{z}>=\left|\sqrt{\frac{2}{3}}\right|^{2}(+\hbar)+\left|\sqrt{\frac{1}{3}}\right|^{2}(0)=\frac{2}{3} \hbar
$$

2. The rotational and vibrational energy levels of a molecule are given by $E_{n, l}=\left(n+\frac{1}{2}\right) \hbar \omega+\frac{\hbar^{2}}{2 I} l(l+1)$. In an elctrical dipole transition the quantum number l changes by one unit $\Delta l= \pm 1$ as the photon carries an angular momentum.
I) If the vibrational state does not change $(\Delta n=0)$, we can observe radiation with the following energies $E_{i}-E_{f}=E_{n, l+1}-E_{n, l}=\frac{\hbar^{2}}{2 I}(l+1)(l+2)-\frac{\hbar^{2}}{2 I} l(l+1)=\frac{\hbar^{2}}{I}(l+1), l=0,1,2,3$, which gives the following photon energies: $\frac{\hbar^{2}}{I}, 2 \frac{\hbar^{2}}{I}, 3 \frac{\hbar^{2}}{I}, 4 \frac{\hbar^{2}}{I}, \ldots$
II) If however the vibrational state changes by one unit $\Delta n=-1$ (note emission), we find two series
one for $\Delta n=-1$, and $\Delta l=-1$:
$E_{i}-E_{f}=E_{n, l+1}-E_{n-1, l}=\hbar \omega+\frac{\hbar^{2}}{I}, \hbar \omega+2 \frac{\hbar^{2}}{I}, \hbar \omega+3 \frac{\hbar^{2}}{I}, \hbar \omega+4 \frac{\hbar^{2}}{I}, \ldots$
the second series for $\Delta n=-1$, and $\Delta l=+1$:
$E_{i}-E_{f}=E_{n, l}-E_{n-1, l+1}=\hbar \omega-\frac{\hbar^{2}}{I}, \hbar \omega-2 \frac{\hbar^{2}}{I}, \hbar \omega-3 \frac{\hbar^{2}}{I}, \hbar \omega-4 \frac{\hbar^{2}}{I}, \ldots$
Note that the spacing between the transition energies is of equal energy except for one. It seems there is one transition energy missing corresponding to $\hbar \omega$. This transition would however violate $\Delta l= \pm 1$.
The separation between the maxima corresponds to $\Delta E=\frac{\hbar^{2}}{I}=h c \Delta \lambda^{-1}$ inserting the appropriate data taken from graph $\Delta \lambda^{-1}=\frac{2968.7-2824.0}{7}=20.67 \mathrm{~cm}^{-1}$. Now we can calculate $I=\mu R^{2}=\frac{m_{H} m_{C l}}{m_{H}+m_{C l}}$ to arrive at $R=\sqrt{\frac{h}{4 \pi^{2} c \Delta \lambda^{-1} \mu}}=1.30 \AA$.
3. Hydrogenic atoms have eigenfunctions $\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \varphi)$. Using the Collection of FORMULAE we find

$$
\begin{aligned}
\psi_{100}(\boldsymbol{r}) & =\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-Z r / a_{0}} \\
\psi_{200}(\boldsymbol{r}) & =\left(\frac{Z^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \\
\psi_{210}(\boldsymbol{r}) & =\left(\frac{Z^{3}}{32 \pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{a_{0}} \cos \theta e^{-Z r / 2 a_{0}} \\
\psi_{21 \pm 1}(\boldsymbol{r}) & =\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{8 a_{0}} \sin \theta e^{ \pm i \varphi} e^{-Z r / 2 a_{0}}
\end{aligned}
$$

where a_{0} is the Bohr radius. The β-decay instantaneously changes $Z=1 \rightarrow Z=2$. According to the expansion theorem, it is possible to express the wave function $u_{i}(\boldsymbol{r})$ before the decay as a linear combination of eigenfunctions $v_{j}(\boldsymbol{r})$ after the decay as

$$
u_{i}(\boldsymbol{r})=\sum_{j} a_{j} v_{j}(\boldsymbol{r})
$$

where

$$
a_{j}=\int v_{j}^{*}(\boldsymbol{r}) u_{i}(\boldsymbol{r}) d^{3} r .
$$

The probability to find the electron in state j is given by $\left|a_{j}\right|^{2}$.
(a) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{200}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}}\left(1-\frac{2 r}{2 a_{0}}\right) e^{-2 r / 2 a_{0}} 4 \pi r^{2} d r \\
& =\frac{4}{a_{0}^{3}} \int_{0}^{\infty} e^{-2 r / a_{0}}\left(r^{2}-\frac{r^{3}}{a_{0}}\right) d r=\frac{4}{a_{0}^{3}}\left[2\left(\frac{a_{0}}{2}\right)^{3}-\frac{6}{a_{0}}\left(\frac{a_{0}}{2}\right)^{4}\right]=-\frac{1}{2} .
\end{aligned}
$$

Thus, the probability is $1 / 4=0.25$.
(b) For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{210}(Z=2)$ the θ-integral is

$$
\int_{0}^{\pi} \cos \theta \sin \theta d \theta=\frac{1}{2} \int_{0}^{\pi} \sin 2 \theta d \theta=\left[-\frac{\cos 2 \theta}{4}\right]_{0}^{\pi}=0
$$

For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{21 \pm 1}(Z=2)$ the φ-integral is

$$
\int_{0}^{2 \pi} e^{ \pm i \varphi} d \varphi=0
$$

Thus, the probability to find the electron in a 2 p state is zero.
(c) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{100}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}} e^{-2 r / a_{0}} 4 \pi r^{2} d r=\frac{8 \sqrt{2}}{a_{0}^{3}} \int_{0}^{\infty} e^{-3 r / a_{0}} r^{2} d r \\
& =\frac{8 \sqrt{2}}{a_{0}^{3}} \frac{a_{0}^{3}}{3^{3}} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{8 \sqrt{2}}{27} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{8 \sqrt{2}}{27} \int_{0}^{\infty} 2 e^{-x} d x=\frac{16 \sqrt{2}}{27}
\end{aligned}
$$

Thus, the probability is $512 / 729 \approx 0.70233$.
(The probability to find the electron in $\psi_{100}(Z=2)$ is $512 / 729=0.702$. Therefore, the electron is found with 95% probability in one of the states 1 s or 2 s .)
(d) No l has to be less than n.
4. First choose a coordinate system. Let the direction of the incoming photon λ be along the x -axis's positive direction and let the outgoing photon λ^{\prime} nearly go out along the y -axis (15 degrees of) in positive direction.
We can start with the observation that as all momentum before the incident is in the positive x -direction this has to be true also after the collision. So as momentum is conserved and the outgoing photon λ^{\prime} leaves in the positive y direction, we make the following conclusions about the electron. The electron must have the same y-momentum in opposite direction to keep the total y momentum zero. The momentum the electron obtains in the x-direction has to be the difference between the incident photon and the outgoing photon's momentum in the x -direction.
(a) for Compton scattering we have the following relation $\lambda^{\prime}-\lambda=\frac{h}{m_{e} c}(1-\cos \theta)$.
$\lambda=\frac{h c}{E_{\text {photon }}}=\frac{6.626 \cdot 10^{-34} 2.998 \cdot 10^{8}}{100 \cdot 10^{1} 1.602 \cdot 10^{-19}}=1.240 \cdot 10^{-11} \mathrm{~m}=0.1240 \AA$. The wave length of the outgoing photon will be
$\lambda^{\prime}=\lambda+\frac{h(1-\cos 75)}{m_{e} c}=\lambda+\frac{6.626 \cdot 10^{-34}(1-\cos 75)}{9.109 \cdot 10^{-31} 2.998 \cdot 10^{8}}=1.240 \cdot 10^{-11}+1.798 \cdot 10^{-12}=1.4198 \cdot 10^{-11} \mathrm{~m}$
$=0.14198 \AA$. The energy is $E^{\prime}=\frac{h c}{\lambda^{\prime}}=\frac{6.626 \cdot 10^{-34} 2.998 \cdot 10^{8}}{1.4198 \cdot 10^{-11}}=1.3991 \cdot 10^{-14} \mathrm{~J}=87.336 \mathrm{keV}=87.3$ keV.
Another route to the energy may be: $E^{\prime}=h \nu^{\prime}=\frac{E}{1+\alpha(1-\cos \theta)}$ where $\alpha=\frac{E}{m_{0} c_{0}^{2}}$. The
dimensionless $\alpha=\frac{100 \cdot 10^{3} \cdot 1 \cdot 602 \cdot 10^{-19}}{9.109 \cdot 10^{-31} \cdot\left(2.998 \cdot 10^{8}\right)^{2}}=0.19567$ and $E^{\prime}=\frac{100 \cdot 10^{3}}{1+0.19567(1-\cos 75)}=87.3 \mathrm{keV}$.
(b) The energy of the electron will be: $100-87.3=12.7 \mathrm{keV}$.
(c) Use conservation of momentum. To calculate the recoil of the electron we have to calculate the momentum of the photon h / λ.

$$
\begin{aligned}
& p_{x}^{0}=p_{x}^{1}+p_{x}^{\text {electron }} \\
& p_{y}^{0}=p_{y}^{1}+p_{y}^{\text {electron }}
\end{aligned}
$$

Before the incident $p_{x}^{0}=\frac{6.626 \cdot 10^{-34}}{1.240 \cdot 10^{-11}}=5.3435 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and $p_{y}^{0}=0$.
After the event the outgoing photon has: $p_{y}^{1}=\frac{6.626 \cdot 10^{-34}}{1.4198 \cdot 10^{-11}} \sin (75)=4.5078 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and $p_{x}^{1}=\frac{6.626 \cdot 10^{-34}}{1.4198 \cdot 10^{-11}} \cos (75)=1.2079 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.
This yields for the electron $p_{x}^{\text {electron }}=p_{x}^{0}-p_{x}^{1}=(5.3435-1.2079) \cdot 10^{-23}=4.1356 \cdot 10^{-23} \mathrm{~kg}$ m / s and $p_{y}^{\text {electron }}=-p_{y}^{1}=-4.5078 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. The angle of the recoil α is given by $\tan \alpha=\frac{p_{l}^{\text {electron }}}{p_{x}^{\text {electron }}}=\frac{-4.5078}{4.1356}=-1.0900$ which gives $\alpha=-47.5^{\circ}($ note sign $)$.

Another way to calculate the angle ϕ of the recoiling electron is: Start with $\cos \theta=\frac{2}{(1+\alpha)^{2} \tan ^{2} \phi+1}$ solving for ϕ yields $\tan \phi=\sqrt{\frac{1}{(1+\alpha)^{2}} \cdot \frac{1+\cos \theta}{1-\cos \theta}}$ and with $\theta=75$ we arrive at $\tan \phi=1.089954$ and hence $\phi=47.46$.

We can corroborate the result in b) in the following way: The length of the electrons momentum vector is $p^{\text {electron }}=\sqrt{4.1356^{2}+4.5078^{2}} \cdot 10^{-23}=6.1174 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. The kinetic energy of the electron can also be calculated from
$E_{\text {kin }}=p^{2} / 2 m=\left(6.1174 \cdot 10^{-23}\right)^{2} /\left(2 \cdot 9.109 \cdot 10^{-31}\right)=2.0542 \cdot 10^{-15} \mathrm{~J}=12.8 \mathrm{keV}$, the same result as in b) (well nearly).
5. A measurement of the spin component in the direction $\hat{n}=\hat{x} \sin (\varphi)+\hat{y} \cos (\varphi)$ gives the value $-\hbar / 2$ (or $+\hbar / 2$ depending of version of problem).

The spin operator $S_{\hat{n}}=\hat{n} \cdot\left(S_{x}, S_{y}, S_{z}\right)$ is

$$
S_{\hat{n}}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & \sin \varphi-i \cos \varphi \\
\sin \varphi+i \cos \varphi & 0
\end{array}\right)=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i e^{i \varphi} \\
i e^{-i \varphi} & 0
\end{array}\right)=\frac{-i \hbar}{2}\left(\begin{array}{cc}
0 & e^{i \varphi} \\
-e^{-i \varphi} & 0
\end{array}\right)
$$

The eigenvalue equation is

$$
S_{\hat{n}} \chi=\lambda \chi \Leftrightarrow \frac{i \hbar}{2}\left(\begin{array}{cc}
0 & -e^{i \varphi} \tag{1}\\
e^{-i \varphi} & 0
\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b}
$$

We find the eigenvalues from

$$
\left|\begin{array}{cc}
-\lambda & \frac{-i \hbar}{2} e^{i \varphi} \\
\frac{i \hbar}{2} e^{-i \varphi} & -\lambda
\end{array}\right|=0 \Rightarrow \lambda^{2}-\left(\frac{\hbar}{2}\right)^{2}=0 \Rightarrow \lambda= \pm \frac{\hbar}{2}
$$

(a) The spin state corresponding to $\lambda=-\hbar / 2$ must satisfy the eigenvalue equation Eq. (1). This yields two equations that are liniearly dependent. Take any of these, say $i a e^{-i \varphi}=-b$ and choose $a=1$ and hence:

$$
\chi_{\hat{n}-}=C\binom{1}{-i e^{-i \varphi}} \Rightarrow \chi_{\hat{n}-}=\frac{1}{\sqrt{2}}\binom{1}{-i e^{-i \varphi}}, \text { or differently } \frac{1}{\sqrt{2}}\binom{i e^{i \varphi}}{1}
$$

where the normalization condition $|a|^{2}+|b|^{2}=1$ was used in the last step. Other correct solutions can be found by a multiplication with an arbitrary phase factor $e^{i \alpha}$.
N.B. this is for the other eigenvalue $\lambda=+\hbar / 2$, an answer to the + version of the question. The spin state corresponding to $\lambda=\hbar / 2$ must satisfy the eigenvalue equation Eq. (1). This yields two equations that are liniearly dependent. Take any of these, say $i a e^{-i \varphi}=b$ and choose $a=1$ and hence:

$$
\chi_{\hat{n}+}=C\binom{1}{i e^{-i \varphi}} \Rightarrow \chi_{\hat{n}+}=\frac{1}{\sqrt{2}}\binom{1}{i e^{-i \varphi}} \text {, or differently } \frac{1}{\sqrt{2}}\binom{-i e^{-i \varphi}}{1},
$$

where the normalization condition $|a|^{2}+|b|^{2}=1$ was used in the last step. Other correct solutions can be found by a multiplication with an arbitrary phase factor $e^{i \alpha}$.
(b) A general spin state (for the z-direction) can be written as $\chi^{z}=a \chi_{+}^{z}+b \chi_{-}^{z}$, where $\chi_{+}^{z}=\binom{1}{0}$ is the spin up and $\chi_{-}^{z}=\binom{0}{1}$ is the spin down spinor in the z-direction. The outcomes of a measurement will be: For $\chi_{\hat{n}-}$ we find that the probability to measure spin up, i.e. $S_{z}=\hbar / 2$ is $|a|^{2}=\left|-e^{-i \varphi} / \sqrt{2}\right|^{2}=1 / 2$, and that the probability to measure spin down, i.e. $S_{z}=-\hbar / 2$ is $|b|^{2}=|1 / \sqrt{2}|^{2}=1 / 2$.
(c) We would get 50% up and 50% down in the \hat{n} direction. The reason is that the states (in b) we start from are eigenstates of S_{z} and this operator is not present in $S_{\hat{n}}$. Had S_{z} been part of $S_{\hat{n}}$ there would be a bias.

