
LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Solution to written exam in Quantum Physics F0047T
Examination date: 2015-03-17
The solutions are just suggestions. They may contain several alternative routes.

1. (a) As

Y1,0 =

√
3

4π
cos(θ) and Y1,±1 =

√
3

8π
sin(θ)e±φ

the wave function can be written as

ψ =
1

4π

(
eiφ sin(θ) + cos(θ)

)
g(r) =

√
1

3
(−
√

2Y1,1 + Y1,0)g(r).

Hence the possible values of Lz are +h̄ and 0.

(b) Since∫
| ψ |2=

1

4π

∫ ∞
0
| g(r) |2 r2dr

∫ π

0
dθ
∫ 2π

0
(1 + cosφ sin 2θ) sin θdφ =

1

2

∫ π

0
sin θ dθ = 1,

the given wave function is normalised. The probability density is then given by P =| ψ |2.

Thus the probability of Lz = +h̄ is |
√

2
3
|2= 2

3
and that of Lz = 0 is |

√
1
3
|2= 1

3
.

(c) The expectation value of Lz is

< Lz >=|
√

2

3
|2 (+h̄)+ |

√
1

3
|2 (0) =

2

3
h̄

2. The rotational and vibrational energy levels of a molecule are given by
En,l = (n+ 1

2
)h̄ω + h̄2

2I
l(l + 1). In an elctrical dipole transition the quantum number l changes by

one unit ∆l = ±1 as the photon carries an angular momentum.

I) If the vibrational state does not change (∆n = 0), we can observe radiation with the

following energies Ei −Ef = En,l+1 −En,l = h̄2

2I
(l+ 1)(l+ 2)− h̄2

2I
l(l+ 1) = h̄2

I
(l+ 1), l = 0, 1, 2, 3,

which gives the following photon energies: h̄2

I
, 2 h̄

2

I
, 3 h̄

2

I
, 4 h̄

2

I
, ...

II) If however the vibrational state changes by one unit ∆n = −1 (note emission), we find two
series
one for ∆n = −1, and ∆l = −1:
Ei − Ef = En,l+1 − En−1,l = h̄ω + h̄2

I
, h̄ω + 2 h̄

2

I
, h̄ω + 3 h̄

2

I
, h̄ω + 4 h̄

2

I
, ...

the second series for ∆n = −1, and ∆l = +1:
Ei − Ef = En,l − En−1,l+1 = h̄ω − h̄2

I
, h̄ω − 2 h̄

2

I
, h̄ω − 3 h̄

2

I
, h̄ω − 4 h̄

2

I
, ...

Note that the spacing between the transition energies is of equal energy except for one. It seems
there is one transition energy missing corresponding to h̄ω. This transition would however
violate ∆l = ±1.

The separation between the maxima corresponds to ∆E = h̄2

I
= hc∆λ−1 inserting the

appropriate data taken from graph ∆λ−1 = 2968.7−2824.0
7

= 20.67cm−1. Now we can calculate

I = µR2 = mHmCl

mH+mCl
to arrive at R =

√
h

4π2c∆λ−1µ
= 1.30Å.
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3. Hydrogenic atoms have eigenfunctions ψnlm = Rnl(r)Ylm(θ, ϕ). Using the Collection of
formulae we find

ψ100(r) =
(
Z3

πa30

)1/2
e−Zr/a0

ψ200(r) =
(
Z3

8πa30

)1/2 (
1− Zr

2a0

)
e−Zr/2a0

ψ210(r) =
(

Z3

32πa30

)1/2
Zr
a0

cos θe−Zr/2a0

ψ21±1(r) =
(
Z3

πa30

)1/2
Zr
8a0

sin θe±iϕe−Zr/2a0

where a0 is the Bohr radius. The β-decay instantaneously changes Z = 1→ Z = 2. According
to the expansion theorem, it is possible to express the wave function ui(r) before the decay as a
linear combination of eigenfunctions vj(r) after the decay as

ui(r) =
∑
j

ajvj(r)

where
aj =

∫
v∗j (r)ui(r)d3r.

The probability to find the electron in state j is given by |aj|2.

(a) Here ui = ψ100(Z = 1) and vj = ψ200(Z = 2). This gives

a =

(
1

πa3
0

)1/2 (
23

8πa3
0

)1/2 ∫ ∞
0

e−r/a0
(

1− 2r

2a0

)
e−2r/2a04πr2dr

=
4

a3
0

∫ ∞
0

e−2r/a0

(
r2 − r3

a0

)
dr =

4

a3
0

[
2
(
a0

2

)3

− 6

a0

(
a0

2

)4
]

= −1

2
.

Thus, the probability is 1/4 = 0.25.

(b) For ui = ψ100(Z = 1) and vj = ψ210(Z = 2) the θ-integral is

∫ π

0
cos θ sin θdθ =

1

2

∫ π

0
sin 2θdθ =

[
−cos 2θ

4

]π
0

= 0.

For ui = ψ100(Z = 1) and vj = ψ21±1(Z = 2) the ϕ-integral is∫ 2π

0
e±iϕdϕ = 0.

Thus, the probability to find the electron in a 2p state is zero.

(c) Here ui = ψ100(Z = 1) and vj = ψ100(Z = 2). This gives

a =

(
1

πa3
0

)1/2 (
23

πa3
0

)1/2 ∫ ∞
0

e−r/a0e−2r/a04πr2dr =
8
√

2

a3
0

∫ ∞
0

e−3r/a0r2dr

=
8
√

2

a3
0

a3
0

33

∫ ∞
0

e−xx2dx =
8
√

2

27

∫ ∞
0

e−xx2dx =
8
√

2

27

∫ ∞
0

2e−xdx =
16
√

2

27

Thus, the probability is 512/729 ≈ 0.70233.

(The probability to find the electron in ψ100(Z = 2) is 512/729 = 0.702. Therefore, the
electron is found with 95% probability in one of the states 1s or 2s.)
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(d) No l has to be less than n.

4. First choose a coordinate system. Let the direction of the incoming photon λ be along the
x-axis’s positive direction and let the outgoing photon λ′ nearly go out along the y-axis (15
degrees of) in positive direction.

We can start with the observation that as all momentum before the incident is in the positive
x-direction this has to be true also after the collision. So as momentum is conserved and the
outgoing photon λ′ leaves in the positive y direction, we make the following conclusions about
the electron. The electron must have the same y-momentum in opposite direction to keep the
total y momentum zero. The momentum the electron obtains in the x-direction has to be the
difference between the incident photon and the outgoing photon’s momentum in the x-direction.

(a) for Compton scattering we have the following relation λ′ − λ = h
mec

(1− cos θ).

λ = hc
Ephoton

= 6.626·10−342.998·108

100·1031.602·10−19 = 1.240 · 10−11m = 0.1240 Å. The wave length of the

outgoing photon will be

λ′ = λ+ h(1−cos 75)
mec

= λ+ 6.626·10−34(1−cos 75)
9.109·10−312.998·108

= 1.240 · 10−11 + 1.798 · 10−12 = 1.4198 · 10−11m

= 0.14198Å. The energy is E ′ = hc
λ′

= 6.626·10−342.998·108

1.4198·10−11 = 1.3991 · 10−14J = 87.336keV = 87.3
keV.
Another route to the energy may be: E ′ = hν ′ = E

1+α(1−cos θ)
where α = E

m0c20
. The

dimensionless α = 100·103·1.602·10−19

9.109·10−31·(2.998·108)2
= 0.19567 and E ′ = 100·103

1+0.19567(1−cos 75)
= 87.3 keV.

(b) The energy of the electron will be: 100 - 87.3 = 12.7 keV.

(c) Use conservation of momentum. To calculate the recoil of the electron we have to calculate
the momentum of the photon h/λ.

p0
x = p1

x + pelectronx

p0
y = p1

y + pelectrony

Before the incident p0
x = 6.626·10−34

1.240·10−11 = 5.3435 · 10−23 kg m/s and p0
y = 0.

After the event the outgoing photon has: p1
y = 6.626·10−34

1.4198·10−11 sin(75) = 4.5078 · 10−23 kg m/s

and p1
x = 6.626·10−34

1.4198·10−11 cos(75) = 1.2079 · 10−23 kg m/s.

This yields for the electron pelectronx = p0
x − p1

x = (5.3435− 1.2079) · 10−23 = 4.1356 · 10−23 kg
m/s and pelectrony = −p1

y = −4.5078 · 10−23 kg m/s. The angle of the recoil α is given by

tanα =
pelectrony

pelectronx
= −4.5078

4.1356
= −1.0900 which gives α = −47.5o (note sign).

Another way to calculate the angle φ of the recoiling electron is: Start with
cos θ = 2

(1+α)2 tan2 φ+1
solving for φ yields tanφ =

√
1

(1+α)2
· 1+cos θ

1−cos θ
and with θ = 75 we arrive

at tanφ = 1.089954 and hence φ = 47.46.

We can corroborate the result in b) in the following way: The length of the electrons
momentum vector is pelectron =

√
4.13562 + 4.50782 · 10−23 = 6.1174 · 10−23 kg m/s. The

kinetic energy of the electron can also be calculated from
Ekin = p2/2m = (6.1174 · 10−23)2/(2 · 9.109 · 10−31) = 2.0542 · 10−15J = 12.8keV, the same
result as in b) (well nearly).

5. A measurement of the spin component in the direction n̂ = x̂ sin(ϕ) + ŷ cos(ϕ) gives the value
−h̄/2 (or +h̄/2 depending of version of problem).
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The spin operator Sn̂ = n̂ · (Sx, Sy, Sz) is

Sn̂ =
h̄

2

(
0 sinϕ− i cosϕ

sinϕ+ i cosϕ 0

)
=
h̄

2

(
0 −ieiϕ

ie−iϕ 0

)
=
−ih̄

2

(
0 eiϕ

−e−iϕ 0

)

The eigenvalue equation is

Sn̂χ = λχ⇔ ih̄

2

(
0 −eiϕ
e−iϕ 0

)(
a
b

)
= λ

(
a
b

)
(1)

We find the eigenvalues from∣∣∣∣∣ −λ −ih̄
2
eiϕ

ih̄
2
e−iϕ −λ

∣∣∣∣∣ = 0 ⇒ λ2 − (
h̄

2
)2 = 0 ⇒ λ = ± h̄

2

(a) The spin state corresponding to λ = −h̄/2 must satisfy the eigenvalue equation Eq. (1).
This yields two equations that are liniearly dependent. Take any of these, say iae−iϕ = −b
and choose a = 1 and hence:

χn̂− = C

(
1

−ie−iϕ
)
⇒ χn̂− =

1√
2

(
1

−ie−iϕ
)
, or differently

1√
2

(
ieiϕ

1

)
,

where the normalization condition |a|2 + |b|2 = 1 was used in the last step. Other correct
solutions can be found by a multiplication with an arbitrary phase factor eiα.

N.B. this is for the other eigenvalue λ = +h̄/2, an answer to the + version of the
question. The spin state corresponding to λ = h̄/2 must satisfy the eigenvalue equation
Eq. (1). This yields two equations that are liniearly dependent. Take any of these, say
iae−iϕ = b and choose a = 1 and hence:

χn̂+ = C

(
1

ie−iϕ

)
⇒ χn̂+ =

1√
2

(
1

ie−iϕ

)
, or differently

1√
2

(
−ie−iϕ

1

)
,

where the normalization condition |a|2 + |b|2 = 1 was used in the last step. Other correct
solutions can be found by a multiplication with an arbitrary phase factor eiα.

(b) A general spin state (for the z–direction) can be written as χz = aχz+ + bχz−, where

χz+ =

(
1
0

)
is the spin up and χz− =

(
0
1

)
is the spin down spinor in the z-direction. The

outcomes of a measurement will be: For χn̂− we find that the probability to measure spin
up, i.e. Sz = h̄/2 is |a|2 = | − e−iϕ/

√
2|2 = 1/2, and that the probability to measure spin

down, i.e. Sz = −h̄/2 is |b|2 = |1/
√

2|2 = 1/2.

(c) We would get 50% up and 50% down in the n̂ direction. The reason is that the states (in
b) we start from are eigenstates of Sz and this operator is not present in Sn̂. Had Sz been
part of Sn̂ there would be a bias.
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