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1. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in
terms of eigenfunctions (here particle in a box). The eigenfunctions are (PH)

ψn(x) =
√

2
a

sin(nπx
a

). We can directly conclude that the given wave function consists of
n = 1, n = 5 and n = 7 functions, we can write:

ψ(x, 0) =

√
11√

8 · 2

√
2√
a

sin
(
πx

a

)
+

√
2

2
√

2 · a
sin

(
4πx

a

)
+

A
√

2√
2 · a

sin
(

5πx

a

)
=

√
11√
16
ψ1(x, 0) +

1√
8
ψ4(x, 0) +

A√
2
ψ5(x, 0)

As all three eigenfunctions are orthonormal the normalisation integral reduces to
11
16

+ 1
8

+ A2

2
= 1 and hence A =

√
3
8

(≈ 0.612).

(b) The wave function contains only n = 1, n = 4 and n = 5 eigenfunctions and therefore the

only possible outcome of an energy meassurement are E1 = h̄2π2

2ma2 with probability 11
16

and

E4 = h̄2π2

2ma2 16 with probability 1
8

and E5 = h̄2π2

2ma2 25 with probability A2

2
= 3

16
.

The average energy is given by
< E >= 11

16
E1 + 1

8
E4 + 3

16
E5 = h̄2π2

2ma2 (11
16

+ 1
8
· 16 + 3

16
· 25) = 118

16
· h̄2π2

2ma2 = 59
8
· h̄2π2

2ma2

(c) The time dependent solution is given by Ψ(x, t) =
∑∞
n=1 cnψn(x)e−iEnt/h̄ and hence

Ψ(x, t) =

√
11

16
ψ1(x, 0)e−i

h̄π2t
2ma2 +

1√
8
ψ4(x, 0)e−i

16h̄π2t
2ma2 +

√
3

16
ψ5(x, 0)e−i

25h̄π2t
2ma2

2. Rewrite L2
x + L2

y = L2 − L2
z, which gives the Hamiltonian

H =
L2 − L2

z

2h̄2 +
L2
z

3h̄2 .

The eigenfunctions are Yl,m

HYl,m =

(
L2 − L2

z

2h̄2 +
L2
z

3h̄2

)
Yl,m =

(
l(l + 1)h̄2 −m2h̄2

2h̄2 +
m2h̄2

3h̄2

)
Yl,m.

Hence the energies are:

El,m =

(
l(l + 1)

2
− m2

6

)
.

The lowest (ground state) energy is E0,0 = 0 (l = 0 no rotation).

l = 1→ m = 0,±1, gives E1,0 = 1eV E1,±1 = 5
6
eV

l = 2→ m = 0,±1,±2, gives E2,0 = 3eV E2,±1 = 17
6

eV E2,±2 = 7
3
eV

and so on.
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3. A measurement of the spin in the direction n̂ = sin(π
4
)êy + cos(π

4
)êz = 1√

2
êy + 1√

2
êz. The spin

operator Sn̂ is

Sn̂ =
1√
2
Sy +

1√
2
Sz =

h̄

2
√

2

(
1 −i
i −1

)

The eigenvalue equation is

Sn̂χ = λχ⇔ h̄

2
√

2

(
1 −i
i −1

)(
a
b

)
= λ

(
a
b

)
(1)

We find the eigenvalues from ∣∣∣∣∣
h̄

2
√

2
− λ −i h̄

2
√

2

i h̄
2
√

2
− h̄

2
√

2
− λ

∣∣∣∣∣ = 0⇒ λ = ± h̄
2

The eigenspinors to Sn corresponding to the + h̄
2

we get from

h̄

2
√

2

(
1 −i
i −1

)(
a
b

)
= +

h̄

2

(
a
b

)

a√
2
− ib√

2
= a⇔ a(

√
2− 1) = −ib let b = 1 and hence a =

−i√
2− 1

This gives the unnormalised spinor(
− i√

2−1

1

)
and after normalisation we have χn̂+ =

1√
2(2 +

√
2)

(
− i√

2−1

1

)

Now we can expand the initial eigenspinor χ+ in these eigenspinors to Sn, the second
eigenspinor you can get from orthogonality to the first one.(

1
0

)
= A

1√
2(2 +

√
2)

(
− i√

2−1

1

)
+B

1√
2(2 +

√
2)

(
1
−i√
2−1

)

The coefficients are subjected to the normalisation condition |A|2 + |B|2 = 1. The coefficient A
can be obtained by multiplying the previous equation from the left with χ∗n̂+.

A =
1√

2(2 +
√

2)

(
− i√

2− 1
1

)
∗
(

1
0

)
= − i√

2− 1
· 1√

2(2 +
√

2)

The probability (to get + h̄
2
) is given by |A|2.

|A|2 =
3 + 2

√
2

4 + 2
√

2
= 0.8535533906

and (to get − h̄
2
) for |B|2.

|B|2 =
1

4 + 2
√

2
= 0.1464466094

To find the probability for + h̄
2

in the z-direction for the up state of Sn express the state in the
eigenspinors to Sz.

χn̂+ =
1√

2(2 +
√

2)

(
− i√

2−1

1

)
= − i√

2− 1
· 1√

2(2 +
√

2)

(
1
0

)
+

1√
2(2 +

√
2)

(
0
1

)
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The probability is given by the square of the coefficient:∣∣∣∣∣∣− i√
2− 1

· 1√
2(2 +

√
2)

∣∣∣∣∣∣
2

= 0.8535533906

4. The eigenfunctions of the infinite square well in one dimension are (Here a solution of the S.E. in
one dimesion is adequate). The width of the well is a.

ψn(x) =

√
2

a
sin

nπx

a
and the eigenenergys are En =

n2π2h̄2

2ma2
where n = 1, 2, 3, ...

In three dimensions the eigenfunctions and eigenenergys are (Here an argument about
separation of variables is needed to justify the structure of the solution)

Ψn,m,l(x, y) = ψn(x) · ψm(y) · ψl(z) and eigenenergys En,m = En +Em +El where the indecies are
n = 1, 2, 3, .. , m = 1, 2, 3, .. and l = 1, 2, 3, ..

a) The eigenfunctions inside the box are (note the sidelength is a/2 for one of the sides)

Ψn,m,l(x, y, z) =

√
2

a
sin

nπx

a
·
√

2

a
sin

mπy

a
·
√

4

a
sin

lπ2z

a
where n = 1, 2, 3, .. ,m = 1, 2, 3, .. and l = 1, 2, 3, ..

The eigenfunctions outside the box are Ψn,m,l(x, y, z) = 0
b) The seven lowest eigenenergys are (note the 4 associated to the quantum number l this is due
to that the length of the box along the z direction is only half of the other two that are of equal
length):

En,m,l =
π2h̄2

2ma2
(n2 +m2 + 4l2), where the 7 lowest are (n2 +m2 + 4l2) = 6, 9, 12, 14, 18, and 21.

c) The seven lowest eigenenergys have degeneracys (different ways to choose n,m, l to form the
same energy) (either one, two or four) as follows:

E1,1,1 = one state (n2 +m2 + 4l2 = 6)

E1,2,1 = E2,1,1 = two states (n2 +m2 + 4l2 = 9)

E2,2,1 = one state (n2 +m2 + 4l2 = 12)

E1,3,1 = E3,1,1 = two states (n2 +m2 + 4l2 = 14)

E2,3,1 = E3,2,1 = two states (n2 +m2 + 4l2 = 17)

E1,1,2 = one state (n2 +m2 + 4l2 = 18)

Energy number 7 is special as the degeneracy is 4 but all four are not connected through a
symmetry operation, ie some of these states are accidentally degenerated. These four can be
grouped in the following way.

E1,2,2 = E2,1,2 = two states (n2 +m2 + 4l2 = 21)

E1,4,1 = E4,1,1 = two states (n2 +m2 + 4l2 = 21)
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5. The task is to calculate the change of the energy levels (ground state E0 and first excited state
E1) for a harmonic oscillator due to a perturbation H1 to the potential.

The two harmonic oscillator eigenfunctions that are of interest are :

ψ0(x) =

√
α√
π
e−

1
2
α2x2

and ψ1(x) =

√
α

2
√
π

2αx e−
1
2
α2x2

where α =

√
mω

h̄

(a) Here we have a perturbation γx4 where γ is small in some sence. The first integral to
calculate (use integration by parts) will be for the change of the ground state energy

〈0 | γx4 | 0〉 =
∫
ψ∗0(x)γx4ψ0(x)dx =

∫ α√
π
γx4 e−α

2x2

dx = [αx = y] =
γ

α4
√
π

∫
y4 e−y

2

dy

where the integral taken separately will be

∫ ∞
−∞

y4 e−y
2

dy = [−y
3

2
e−y

2

]∞−∞ +
∫ ∞
−∞

3y2

2
e−y

2

= [−3y1

4
e−y

2

]∞−∞ +
∫ ∞
−∞

3

4
e−y

2

=
3

4

√
π

Hence the shift of the ground state energy will be

〈0 | γx4 | 0〉 =
γ

α4
√
π

3

4

√
π =

3γ

4α4
=

3γ

4

(
h̄

mω

)2

The energy of the unperturbed groundstate is E0 = h̄ω
2

. Hence the energy of the perturbed
groundstate is

E
perturbed
0 =

h̄ω

2
+

3γ

4

(
h̄

mω

)2

(b) Here we have a perturbation εx where ε is small in some sence. The integrals to be
calculated are 〈0 | εx | 0〉 and 〈1 | εx | 1〉. The squares of both eigenfunctions are even
functions and as the perturbation is odd both integrals will be zero.

Hence there is no change in energy to first order.
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