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Examination date: 2016-01-12
The solutions are just suggestions. They may contain several alternative routes.

1. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
x = r sin θ sinφ, y = r sin θ cosφ, z = r cos θ and hence
xy = r2 sin2 θ sinφ cosφ = r2 sin2 θ(ei2φ − e−i2φ)/4i using the Euler relations) the appropriate

spherical harmonics can now be identified Y2,−2 = 1
4

√
15
2π

sin2 θe−i2φ and Y2,2 = 1
4

√
15
2π

sin2 θei2φ

and we arrive at

ψ(r) = ψ(x, y, z) = N · xy · e−r/3a0 = N
r2

4i

√
32π

15
(Y2,2 − Y2,−2)e−r/3a0 . (1)

As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is one. For the
operator Lz we note the two spherical harmonics have the same pre factor (one has -1 and the
other has +1 but the absolute value square is the same) ie they will have the same probability.
The probability to find m = 2h̄ is 1

2
0, for m = 1h̄ is 0, for m = 0h̄ is 0 for m = −1h̄ is 0, and for

m = −2h̄ is 1
2
. As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is

one.

b. To calculate the expectation value < r > we need to normalise the given wave function if we
wish to do the integral. In order to achieve this in a simple way is to identify the radial wave
function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or
equal to 3. By inspection of eq (1) and 2 we find n = 3 this function has the correct exponential

and the correct power of r (r2) and hence R3,2(r) = 2
√

2
27
√

5

(
Z

3a0

)3/2 (
Zr
a0

)2
e−Zr/3a0 . We also note

that Y2,2 and Y2,−2 are normalised but the sum (Y2,2 − Y2,−2) is not normalised. As the
normalisation integral will produce 1+1=2, the sum has to be changed to ( 1√

2
Y2,2 − 1√

2
Y2,−2) in

order to be normalised. Note that R3,2(r) contains an r2 term as also a e−r/3a0 term. The wave
function can now be completed to the following normalized wave function (note that we do not
need to calculate the constant N as all separate parts of ψ(r) are normalised by them selves)

ψ(r) = ψ(x, y, z) = N · xy · e−r/3a0 = R3,2(r)

(
1√
2
Y2,2 −

1√
2
Y2,−2

)

From physics handbook page 292 you find

〈r〉 =
1

2

[
3n2 − l(l + 1)

] (a0

Z

)
=

1

2

[
3 32 − 2(2 + 1)

] (a0

1

)
=

21

2
a0 =

10.5 · 0.5292 Å = 5.56 Å.

You may also do the integral directly like this (only the part depending on r are of interest as
the angular parts just will be the normalising integral):

〈r〉 =
∫ ∞

0

∫ π

0

∫ 2π

0
dφ dθ dr r2 sin(θ) r | R3,2(r) |2

∣∣∣∣∣ 1√
2
Y2,2 −

1√
2
Y2,−2

∣∣∣∣∣
2

=

∫ ∞
0

dr r3 | R3,2(r) |2=
21

2
a0 = 10.5 · 0.5292 Å = 5.56 Å.
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2. a) There are 4 states the system can have with the energys and (degeneracys) h̄ω (1), 2h̄ω (2)
and 3h̄ω (1). The partition sum is given by:

Z =
n1=1,n2=1∑
n1=0,n2=0

e−(n1+n2+1.0)h̄ω/kBT = e−1.0h̄ω/kBT + 2e−2.0h̄ω/kBT + e−3.0h̄ω/kBT

b) There is one state of the lower energy and there are two states with the next higher energy.
The probability to find the system in a state of energy is proportional to the Boltzmann
factor, we arrive at the following equation for the probabilities.

1e−1,0h̄ω/kBT

Z
=

2e−2,0h̄ω/kBT

Z
(2)

and this reduces to e1h̄ω/kBT = 2 which evaluates to T = 1h̄ω
kB ln 2

.

c) The partition sum at this specific temperature is given by: (kBT = 1h̄ω
ln 2

) ( 1
kBT

= ln 2
1h̄ω

) we
arrive at the following

Z = e−1.0h̄ω/kBT + 2e−2.0h̄ω/kBT + e−3.0h̄ω/kBT = e−1.0 ln 2 + 2e−2.0 ln 2 + e−3.0 ln 2 =

1

2
+ 2

1

4
+

1

8
=

1

2
+

1

2
+

1

8
= 1 +

1

8
=

9

8

The probability P will be (put Z into one of the terms in eq (2).

P =
e−1,0 ln 2

9
8

=
1

2
· 8

9
=

4

9
≈ 0.444...

As a check we can calculate for the state with the highest energy

P3 =
e−3,0 ln 2

9
8

=
1

8
· 8

9
=

1

9
≈ 0.111...

and we can easily conclude the probabilities add up to one.

3. (a) There are two ways to reach a solution for this. The usual rule for the vibrational transition
is ∆n = ±1 and this would correspond to a photon of energy hν1 = h̄ω, note only
approximately as we also need a change in the rotational quantum number l. Here we also
allow for anharmonic transitions ∆n = ±2 corresponding to photons of energy hν2 = 2h̄ω.
Considering the relation between wavelength and frequency for an electromagnetic wave
the photon of frequency ν2 will have only half the wavelength compared to the ν1 photon.
Hence the upper is the anharmonic transition and the lower is the harmonic transition.

The second route is to note that the anharmonic transitions are much rarer. Comparing
the scales for the intensity we note that the lower has an intensity of more than a factor of
1000 larger than the upper spectra. Hence events contributing to the upper spectra are
much rarer compared to events contributing to the lower spectra. We can draw the same
conclusion the upper is the anharmonic transition and the lower is the harmonic transition.

After this we do not need to consider the upper anharmonic spectra any more.

(b) Take data from the lower spectra as this is for the harmonic transitions ∆n = ±1.

The energy levels of a molecule, due to vibrations and rotation, are given by
En,l = (n+ 1

2
)h̄ω+ h̄2

2I
l(l+ 1). The selection rule for a dipole transition is to change l by one

unit ∆l = ±1. In figure 1 a principal layout of the levels is shown. We first need to
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Figure 1: Energy levels for a diatomic molecule. The long horisontal lines mark the l = 0 levels, with the
vibrational quantum number n to the right. The spacing in energy between these lines is h̄ω. The states
with higher l-values (the rotational bands) give a dense sequence of states for each n-value. The arrows
show two possible transitions, one harmonic (n = 2→ n = 1) and one anharmonic (n = 2→ n = 0).

establish the relation between the spectra and the energy levels. For the lower spectra (of
the problem) we have ∆n = −1 (minus sign = emission spectra) and two possible ∆l = ±1.

We start with an analysis of the transitions between energy levels.

One series has ∆n = −1,∆l = −1: Ie a change from a level with l + 1 to a level with l.

The energy difference will be
∆E = h̄ω + h̄2

2I
(l + 1)(l + 2)− h̄2

2I
l(l + 1) = h̄2

I
(l + 1), l = 0, 1, 2, 3, which gives the following

energies (for photons):

h̄ω + h̄2

I
, h̄ω + 2 h̄

2

I
, h̄ω + 3 h̄

2

I
, h̄ω + 4 h̄

2

I
, ...

A similar analysis gives the other series ∆n = −1,∆l = +1 (l→ l + 1):

h̄ω − h̄2

I
, h̄ω − 2 h̄

2

I
, h̄ω − 3 h̄

2

I
, h̄ω − 4 h̄

2

I
, ...

All these energy differences (photon energies) will appear in the spectra. It is also clear
that there is always a change in the rotational quantum number l, ∆l = ±1. It therefore
seems as if there is a line missing for the unalowed transition ∆l = 0 in the spectrum
corresponding to the energy h̄ω

The strength of the coupling constant is embedded in the in the frequency ω of the
oscillator, given by the missing line. The distance between the two atoms is given by the
energy difference between the lines from the rotational transitions.

Extrapolate the ’wave length’ of the missing line: λ = 4.6 + 4.7−4.6
34.8

23.0 = 4.67µm. The
energy of the missing line corresponds to h̄ω of the oscillator.

The strength k of the bond is from ω =
√
k/µ where µ is the reduced mass. For carbon

monoxide we have the reduced mass µ = mCmO

mC+mO
= 12.011·15.999

12.011+15.999
= 6.86055u

= 6.86055 · 1.660538 · 10−27 = 1.13922 · 10−26 kg.

To calculate the distance between the atoms we have to use the moment of inertia I = µR2.
This is related to the energy difference between the rotational spectral lines ∆E = h̄2

I
. The

energy of a photon is given by E = hc
λ

. As the given spektra are given as intensity as a
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function of wave length λ we have two options to calculate for ∆E. We can estimate the λ
of two adjecent lines invert these two and calculate the difference. Or we do like this
differentiate E = hc

λ
dE = − hc

λ2
dλ we can now relate a difference in λ to a difference in

energy E.

From the graph we find the separation between 11 lines (10 spaces) is 32.8mm. This can be
transformed to a line separation ∆λ = 0.10

34.8
32.8
10

= 0.00943µm. From this we can calculate
∆E = hc

λ2
∆λ. Omit the minus sign as we calculate photon energies.

NOTE In the literature one often finds spectra in units of λ−1 inverse wave length which in
principle is an energy scale. For that case the energy difference is written
∆E = h̄2

I
= hc∆λ−1. Here ∆λ−1 = 1

λ2
− 1

λ1
where λ1, λ2 are two consecutive lines of the

rotational spectra. This ∆λ−1 can be related to ∆λ by ∆λ−1 = − λ
λ2

. The minus signs we
can omit as long as we keep in mind that a photon has a positiv energy. Hence this equates
to ∆λ−1 = 0.00943

4.672
= 4.324 · 10−4(µm)−1 = 4.324 · 102(m)−1.

Now back to the solution.

Now we can calculate I = µR2 = mCmO

mC+mO
R2 to arrive at

R =

√
hλ2

4π2 c ∆λ µ
=

√
6.626 10−34 (4.67 · 10−6)2

4π2 · 2.997 108 · 0.00943 · 10−6 · 1.13922 10−26
= 1.066 10−10m (3)

≈ 1.07 10−10m or 1.1 10−10m. (4)

In wikepedia you find R = 1.12 10−10m for Carbon monoxide.

(c) The missing line would represent a transition with no change of the rotational quantum
number l, ie ∆l = 0. This is not allowed according to the selection rule that states that
∆l = ±1.

4. Use the spin matrixes to evaluate the expectation values.

< Sx >=
1

9
(2 + i, 2)

h̄

2

(
0 1
1 0

)(
2− i

2

)
=

4

9
h̄

< Sy >=
1

9
(2 + i, 2)

h̄

2

(
0 −i
i 0

)(
2− i

2

)
=

2

9
h̄

< Sz >=
1

9
(2 + i, 2)

h̄

2

(
1 0
0 −1

)(
2− i

2

)
=

1

18
h̄

If one squares a spin matrix σ2
i you will find a result proportional to the unit matrix for all three

indecies x, y or z.

S2
x =

h̄2

4

(
0 1
1 0

)(
0 1
1 0

)
=
h̄2

4

(
1 0
0 1

)
We arrive at:

< S2
x >=< S2

y >=< S2
z >= h̄2 1

36
(2 + i, 2)

(
1 0
0 1

)(
2− i

2

)
=

1

4
h̄2
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5. (a) ih̄ ∂2

∂t2
cosωt = −ih̄ω ∂

∂t
sinωt = −ih̄ω2 cosωt YES

(b) ∂
∂x
eikx = ikeikx YES

(c) ∂
∂x
e−ax

2
= −2axe−ax

2
NO

(d) ∂
∂x

cos kx = −k sin kx NO

(e) ∂
∂x
kx = k NO

(f) P̂ sin(kx) = sin(−kx) = − sin(kx) YES

(g) −ih̄ ∂
∂z
C(1 + z2) = −ih̄C(0 + 2z) NO

(h) − h̄
2
∂
∂z
Ce−3z = − h̄

2
C(−3)e−3z ∝ ψ(z) YES

(i) C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 =? This has to be done in some steps. Start by doing this derivative

first: − ∂2

∂z2
ze−

1
2
z2 = − ∂

∂z
(e−

1
2
z2 − z2e−

1
2
z2) = −(−ze− 1

2
z2 − 2ze−

1
2
z2 + z3e−

1
2
z2) =

3ze−
1
2
z2 − z3e−

1
2
z2 .

Now you go back to the start: C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 = C

2
(z3e−

1
2
z2 + 3ze−

1
2
z2 − z3e−

1
2
z2) =

C
2

(+3ze−
1
2
z2) = ∝ ψ(z) YES
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