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The solutions are just suggestions. They may contain several alternative routes.

1. Note: As the task is ’solve the Schrödinger equation’ failing to do so will result in nought points.

This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− h̄2

2m

d2

dx2
Ψ(x, y)− h̄2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− h̄2

2m

d2

dx2
ψx(x)− h̄2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− h̄2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

h̄2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ (Ψ(0) = Ψ(a) = 0) into
account.

A cos(0) +B sin(0) = 0 and A cos(ka) +B sin(ka) = 0

From the first relation we get A = 0. From the second we get B sin(ka) = 0 where ka = nπ with

n = 1, 2, 3, ... and hence k = nπ
a

. The normalising constant B =
√

2
a

you get from the condition∫ a/2
−a/2 | Ψ |2 dx = 1.

The solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (1)

By analogy the y directions is treated in a similar fasion but with a different size of box.

The solution is:

ψm(y) =
2√
a

sin(
2mπy

a
) with eigenenergys Em =

2m2π2h̄2

Ma2
where m = 1, 2, 3, ... (2)

Now we have the eigenfunctions of the one dimensional problem and the solution to the 2
dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (3)

1



In the area where the potential is infinite the wave function is equal to zero.

b) The ground state eigenfunction is given by (using eq. (3))

Ψn=1,m=1(x, y) = ψ1(x) · ψ1(y) =

√
2

a
sin(

πx

a
) · 2√

a
sin(

2πy

a
) (4)

The next lowest state (in energy) eigenfunction is given by (using eq. (1) and (2)). Note there is
only one eigenfunction as (Ψn=1,m=2(x, y)) has an higher energy.

Ψn=2,m=1(x, y) = ψ2(x) · ψ1(y) =

√
2

a
sin(2

πx

a
) · 2√

a
sin(

2πy

a
) (5)

Orthogonality is defined as∫
x

∫
y

Ψn1,m1(x, y)Ψn2,m2(x, y) = δn1,n2 δm1,m2 (6)

by explicit calculation∫ a

x=0

∫ a/2

y=0

(
2
√

2

a
sin(

πx

a
) · sin(

2πy

a
)

)
·
(

2
√

2

a
sin(2

πx

a
) · sin(

2πy

a
)

)
= calculations = 0 (7)

this is a separable integral (in x and y), suggestion do the integral in x first as this will be zero
as they belong to different eigenvalues. Thus the calculation ends with a zero as it should.

2. (a) The parity of a hydrogen eigenfunction ψnlml
(r) is given by (−1)l. The given wave function

Ψ(r) consists of eigenfunctions with the same parity. Hence Ψ(r) has a definite parity.

(b) The probability is given by the absolute square of the coefficients.
(Ψ(r, t = 0) = 1√

15
(3ψ100(r)− 2ψ200(r) + ψ320(r)− ψ322(r)))

The probabilities are (in order) 9
15

, 4
15

, 1
15

, 1
15

. as a check they sum up to 1 as they should
do.

(c) The energy of a single eigenstate is given by: En = −13.56
n2 eV. The expectation value is

given by < E >= 9
15

(−13.56
12

) + 4
15

(−13.56
22

) + 1
15

(−13.56
32

) + 1
15

(−13.56
32

) =
−13.56( 9

15
+ 4

60
+ 1

135
+ 1

135
) = −9.240889 ≈ −9.24 eV

The operator L2 has eigenvalues h̄2l(l + 1). The expectation value is given by
< L2 >= 9

15
· 0 + 4

15
· 0 + 1

15
(h̄22(2 + 1)) + 1

15
(h̄22(2 + 1)) = 12

15
h̄2 = 4

5
h̄2

The operator Lz has eigenvalues h̄ml. The expectation value is given by
< Lz >= 9

15
· 0 + 4

15
· 0 + 1

15
· 0 + 1

15
(h̄2) = 2

15
h̄

3. The task is to calculate the change of the difference between two energy levels (ground state E0

and first excited state E1) for a harmonic oscillator due to a perturbation H1 to the potential.

E1
1 − E1

0 = E1 + 〈1 | H1 | 1〉 −
(
E0 + 〈0 | H1 | 0〉

)
The two harmonic oscillator eigenfunctions that are of interest are :

ψ0(x) =

√
α√
π
e−

1
2
α2x2 and ψ1(x) =

√
α

2
√
π

2αx e−
1
2
α2x2 where α =

√
mω

h̄
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The first integral to calculate (use integration by parts) will be for the change of the ground
state energy

〈0 | H1 | 0〉 =
∫
ψ∗0(x)H1ψ0(x)dx =

∫ α√
π
Ax4 e−α

2x2dx = [αx = y] =
A

α4
√
π

∫
y4 e−y

2

dy

where the integral taken separately will be

∫ ∞
−∞

y4 e−y
2

dy = [−y
3

2
e−y

2

]∞−∞ +
∫ ∞
−∞

3y2

2
e−y

2

= [−3y1

4
e−y

2

]∞−∞ +
∫ ∞
−∞

3

4
e−y

2

=
3

4

√
π

Hence the shift of the ground state energy will be

〈0 | H1 | 0〉 =
A

α4
√
π

3

4

√
π =

3A

4α4
=

3A

4

(
h̄

mω

)2

The second integral to calculate (use integration by parts) will be for the change of the energy of
the lowest excited state.

〈1 | H1 | 1〉 =
∫
ψ∗1(x)H1ψ1(x)dx =

∫ α

2
√
π
Ax4 4α2x2e−α

2x2dx = [αx = y] =
2A

α4
√
π

∫
y6 e−y

2

dy

where the integral taken separately will be

∫ ∞
−∞

y6 e−y
2

dy = [−y
5

2
e−y

2

]∞−∞ +
∫ ∞
−∞

5y4

2
e−y

2

= [−5y3

4
e−y

2

]∞−∞ +
∫ ∞
−∞

15y2

4
e−y

2

=

= [−15y1

8
e−y

2

]∞−∞ +
∫ ∞
−∞

15

8
e−y

2

=
15

8

√
π

Hence the shift of the energy of the lowest excited state will be

〈1 | H1 | 1〉 =
2A

α4
√
π

15

8

√
π =

15A

4α4
=

15A

4

(
h̄

mω

)2

The difference in the perturbed levels energys will be

E1
1 − E1

0 =
3

2
h̄ω +

15A

4α4
− (

1

2
h̄ω +

3A

4α4
) = h̄ω +

12A

4α4
= h̄ω + 3A

(
h̄

mω

)2

Note that the constant A has dimension.

4. (a) The mean position of the particle is

< x >=
∫ ∞
−∞

ψ∗(x)xψ∗(x)dx =
γ√
π

∫ ∞
−∞

xe−γ
2x2dx = 0

(b) The mean momentum of the particle is

< p >=
∫ ∞
−∞

ψ∗(x)
h̄

i
(
d

dx
ψ(x))dx =

γh̄√
iπ

∫ ∞
−∞

e−γ
2x2/2 d

dx
e−γ

2x2/2dx = 0
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(c) The Schrödinger equation (
− h̄2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x)

can be written as

− h̄2

2m

d2

dx2
ψ(x) = [E − V (x)]ψ(x).

As

− h̄2

2m

d2

dx2
e−γ

2x2/2 = − h̄2

2m
(−γ2 + γ4x2)e−γ

2x2/2

we have

E − V (x) = − h̄2

2m
(−γ2 + γ4x2)

or

V (x) =
h̄2

2m
(−γ2 + γ4x2) +

h̄2γ2

2m
=
h̄2γ4x2

2m

5. a) There are 4 states the system can have with the energys and (degeneracys) h̄ω (1), 2h̄ω (2)
and 3h̄ω (1). The partition sum is given by:

Z =
n1=1,n2=1∑
n1=0,n2=0

e−(n1+n2+1.0)h̄ω/kBT = e−1.0h̄ω/kBT + 2e−2.0h̄ω/kBT + e−3.0h̄ω/kBT

b) There is one state of the lower energy and two states with the next higher energy. The
probability to find the system in a state of energy is proportional to the Boltzmann factor,
we arrive at the following equation.

1e−1,0h̄ω/kBT

Z
=

2e−2,0h̄ω/kBT

Z
(8)

and e1h̄ω/kBT = 2 which evaluates to T = 1h̄ω
kB ln 2

.

c) The partition sum at this specific temperature is given by: (kBT = 1h̄ω
ln 2

) ( 1
kBT

= ln 2
1h̄ω

) we
arrive at the following

Z = e−1.0h̄ω/kBT + 2e−2.0h̄ω/kBT + e−3.0h̄ω/kBT = e−1.0 ln 2 + 2e−2.0 ln 2 + e−3.0 ln 2 =

1

2
+ 2

1

4
+

1

8
=

1

2
+

1

2
+

1

8
= 1 +

1

8
=

9

8

The probability P will be (put Z into one of the terms in eq (8).

P =
e−1,0 ln 2

9
8

=
1

2
· 8

9
=

4

9
≈ 0.444...

As a check we can calculate for the state with the highest energy

P3 =
e−3,0 ln 2

9
8

=
1

8
· 8

9
=

1

9
≈ 0.111...

and we can easily conclude the probabilities add up to one.
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