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The solutions are just suggestions. They may contain several alternative routes.

1. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− h̄2

2m

d2

dx2
Ψ(x, y)− h̄2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− h̄2

2m

d2

dx2
ψx(x)− h̄2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− h̄2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

h̄2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(
Ψ(−a

2
) = Ψ(a

2
) = 0

)
into

account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the

condition
∫ a/2
−a/2 | Ψ |2 dx = 1. The condition sin(ka

2
) = 0 gives ka

2
= π

2
∗ (even− integer). The

solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 2, 4, 6, ... (1)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√
2

a
cos(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 3, 5, ... (2)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (3)
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In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (4)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√
2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2h̄2

2Ma2
where n = 1, 2, 3, ... (5)

ψn(x) =
√

2
a

sin(nπx
a

+ nπ
2

) =
√

2
a

(
sin(nπx

a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)
. We see that we recover

the solution in eq (1), (2) and (3) as we let n run from 1 to ∞.

b) Now we turn to the question of parity, ie whether the wave function is odd or even under a
change of coordinates from (x, y) to (−x,−y). The one dimensional eigenfunctions in eq (1) and
(2) have a definite parity. The functions in (1) are odd whereas the functions in (2) are even. As
the eigenstates for the 2 dimensional system are formed from eq (3) ie products of functions that
are even or odd the total function itself will be either even or odd as well.

The four lowest eigenenergies are given by

En,m =
π2h̄2

2Ma2
(n2 +m2), where the 4 lowest are (n2 +m2) = 2, 5, 8, 10.

When we form the eigenstates we need to keep track of the parity of the ψn(x) and ψm(y). It is
therefore necessary to have the functions in the form like in eq (1) and (2) to identify the parity
as odd or even. This is difficult if you try with functions like eq (5) even though it is a correct
eigenstate it is hard to identify their parity.

E1,1 = one state (n2 +m2 = 2) even * even = even

E1,2 = E2,1 = two states (n2 +m2 = 5) odd * even = odd

E2,2 = one state (n2 +m2 = 8) odd * odd = even

E1,3 = E3,1 = two states (n2 +m2 = 10) even * even = even

So of the four energys (states) only one is odd and three are even.

2. (a) Let the commutator act on a wave function Ψ(x) and px = −ih̄ d
dx

[x2, p2
x]Ψ(x) = −h̄2(x2 d

2Ψ(x)
dx2 − d2(x2Ψ(x))

dx2 ) = −h̄2
(
x2 d

2Ψ(x)
dx2 − x2 d

2Ψ(x)
dx2 − 4xdΨ(x)

dx
− 2Ψ(x)

)
=

+h̄22Ψ(x) + 4xh̄2 dΨ(x)
dx

=
(
+h̄22 + i4h̄xpx

)
Ψ(x) concluding for the commutator:

[x2, p2
x] = +2h̄2 + 4ih̄xpx .

(b) The energy levels for a hydrogen like system are given by: En = −13.6Z
2

n2 [eV], here we have
Z = +3 : ∆E = E(2s)− E(1s) = E2 − E1 = −13.54 · ( 9

22 − 9
12 ) = 13.54 · 27

4
= 91, 53 eV
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(c) The angular part of the wave function can be written as a spherical harmonic:

3 cos2 θ − 1 ∝ Y20

Which gives l = 2 och m = 0. The part depending on r (r2/a2
µ)e−r/3aµ corresponding to the

principal quantum number n = 3 och l = 2 consistent with Y20.

3. Rewrite L2
z + L2

y = L2 − L2
x, which gives the Hamiltonian

H =
L2 − L2

x

2h̄2 +
L4
x

4h̄2 =
L2 − L2

x

4h̄2 .

Here we use the freedom to orient the coordinate system such that the appropriate operators are
Lx and L2 instead of the usual conventional Lz and L2. The eigenfunctions are not the ordinary
spherical harmonics but we know the eigenvalue spectrum that is the same. Lets denote the
eigenfunctions by Ỹl,mx

HỸl,mx =

(
L2 − L2

x

2h̄2 +
L2
x

4h̄2

)
Ỹl,mx =

(
l(l + 1)h̄2 −m2

xh̄
2

2h̄2 +
m2
xh̄

2

4h̄2

)
Ỹl,mx .

Hence the energies are:

El,mx =

(
l(l + 1)

2
− m2

x

4

)
.

An important issue is the relation between l and mx, ie l = 0, 1, 2, 3, ... and
mx = −l,−l + 1, ..., 0, l − 1, l. Or it may also be expressed through some kind of treatment
where it from the treatment is clear how l and mx are related. The lowest (ground state) energy
is E0,0 = 0 (l = 0 no rotation).

l = 1→ mx = 0,±1, gives E1,0 = 2
2

= 1eV E1,±1 = 3
4
eV

l = 2→ mx = 0,±1,±2, gives E2,0 = 3eV E2,±1 = 11
4

eV E2,±2 = 2eV

.

.

.

4.

5. (a) There are several ways to determine A. One is to integrate and use the normalization
condition to solve for A. A different path (done here) is to write the given wave function in

terms of eigenfunctions. The eigenfunctions are (PH) ψ(x) =
√

2
a

sin(nπx
a

). We can directly
conclude that the given wave function consists of eigenfunctions with n = 1 and n = 5, we
can write:

ψ(x, 0) =
A
√

2√
2a

sin
(
πx

a

)
+

√
2√

2 · 5a
sin

(
5πx

a

)
=

A√
2
ψ1(x, 0) +

1√
10
ψ5(x, 0)

As both eigenfunctions are orthonormal the normalisation integral reduces to A2

2
+ 1

10
= 1

and hence A =
√

18
10

=
√

9
5

= 3√
5

(b) The wave function contains only n = 1 and n = 5 eigenfunctions and therefore the only

possible outcomes of an energy meassurement are E1 = h̄2π2

2ma2 with probability A2

2
= 0.9 and

E5 = h̄2π2

2ma2 25 with probability 1 - 0.9 = 0.1 . The average energy is given by

< E >= 0.9E1 + 0.1E5 = h̄2π2

2ma2 (0.9 + 0.1 · 25) = 3.4 · h̄2π2

2ma2 = 1.7 · h̄2π2

ma2
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(c) The time dependent solution is given by Ψ(x, t) =
∑∞
n=1 cnψn(x)e−iEnt/h̄ and hence

Ψ(x, t) =

√
9

10
ψ1(x, 0)e−i

h̄π2t
2ma2 +

1√
10
ψ5(x, 0)e−i

25h̄π2t
2ma2

6. (a) The mean position of the particle is

< x >=
∫ ∞
−∞

ψ∗(x)xψ∗(x)dx =
γ√
π

∫ ∞
−∞

xe−γ
2x2

dx = 0

(b) The mean momentum of the particle is

< p >=
∫ ∞
−∞

ψ∗(x)
h̄

i
(
d

dx
ψ(x))dx =

γh̄√
iπ

∫ ∞
−∞

e−γ
2x2/2 d

dx
e−γ

2x2/2dx = 0

(c) The Schrödinger equation (
− h̄2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x)

can be written as

− h̄2

2m

d2

dx2
ψ(x) = [E − V (x)]ψ(x).

As

− h̄2

2m

d2

dx2
e−γ

2x2/2 = − h̄2

2m
(−γ2 + γ4x2)e−γ

2x2/2

we have

E − V (x) = − h̄2

2m
(−γ2 + γ4x2)

or

V (x) =
h̄2

2m
(−γ2 + γ4x2) +

h̄2γ2

2m
=
h̄2γ4x2

2m
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