LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Solution to written exam in Quantum Physics F0047T

Examination date: 2018-01-09
The solutions are just suggestions. They may contain several alternative routes.

1. (a) $i \hbar \frac{\partial^{2}}{\partial t^{2}} \cos \omega t=-i \hbar \omega \frac{\partial}{\partial t} \sin \omega t=-i \hbar \omega^{2} \cos \omega t \quad$ YES
(b) $\frac{\partial}{\partial x} e^{i k x}=i k e^{i k x} \quad$ YES
(c) $\frac{\partial}{\partial x} e^{-a x^{2}}=-2 a x e^{-a x^{2}} \quad$ NO
(d) $\frac{\partial}{\partial x} \cos k x=-k \sin k x \quad \mathrm{NO}$
(e) $\frac{\partial}{\partial x} k x=k \quad$ NO
(f) $\hat{P} \sin (k x)=\sin (-k x)=-\sin (k x) \quad$ YES
(g) $-i \hbar \frac{\partial}{\partial z} C\left(1+z^{2}\right)=-i \hbar C(0+2 z) \quad$ NO
(h) $-\frac{\hbar}{2} \frac{\partial}{\partial z} C e^{-3 z}=-\frac{\hbar}{2} C(-3) e^{-3 z} \propto \psi(z) \quad$ YES
(i) $\frac{C}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right) z e^{-\frac{1}{2} z^{2}}=$? This has to be done in some steps. Start by doing this derivative first: $-\frac{\partial^{2}}{\partial z^{2}} z e^{-\frac{1}{2} z^{2}}=-\frac{\partial}{\partial z}\left(e^{-\frac{1}{2} z^{2}}-z^{2} e^{-\frac{1}{2} z^{2}}\right)=-\left(-z e^{-\frac{1}{2} z^{2}}-2 z e^{-\frac{1}{2} z^{2}}+z^{3} e^{-\frac{1}{2} z^{2}}\right)=$ $3 z e^{-\frac{1}{2} z^{2}}-z^{3} e^{-\frac{1}{2} z^{2}}$.
Now you go back to the start: $\frac{C}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right) z e^{-\frac{1}{2} z^{2}}=\frac{C}{2}\left(z^{3} e^{-\frac{1}{2} z^{2}}+3 z e^{-\frac{1}{2} z^{2}}-z^{3} e^{-\frac{1}{2} z^{2}}\right)=$ $\frac{C}{2}\left(+3 z e^{-\frac{1}{2} z^{2}}\right)=\propto \psi(z) \quad$ YES
2. \mathbf{a}

The spinor is not normalised and we need to do this first:

$$
\begin{gathered}
1=\chi^{*} \chi=|A|^{2}(2-5 i, 3+i)\binom{2+5 i}{3-i}=|A|^{2}\left(|2+5 i|^{2}+|3-i|^{2}\right)=|A|^{2}(29+10), \\
\text { and hence }: A=\frac{1}{\sqrt{39}}
\end{gathered}
$$

Note an expectation value is always a real number, never a complex one! Even if you had taken A to be a complex number like $A=\frac{i}{\sqrt{39}}$ it would not change the expectation value as the expectation value below only involves $|A|^{2}$.

$$
\begin{aligned}
& \left\langle S_{x}\right\rangle=\frac{1}{39}(2-5 i, 3+i) \frac{\hbar}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\binom{2+5 i}{3-i}=\frac{1}{39} \hbar \\
& \left.<S_{y}\right\rangle=\frac{1}{39}(2-5 i, 3+i) \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{2+5 i}{3-i}=-\frac{17}{39} \hbar \\
& \left.<S_{z}\right\rangle=\frac{1}{39}(2-5 i, 3+i) \frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{2+5 i}{3-i}=\frac{19}{78} \hbar
\end{aligned}
$$

b

Measurement along the x direction means: $S=(1,0,0) \cdot\left(S_{x}, S_{y}, S_{z}\right)=S_{x}$. The idea is to expand the initial spinor χ into the eigenspinors of S_{x}. So we start to calculate the eigenvalues and eigenspinors to S_{x}. The spin operator S_{x} is

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

we find the eigenvalues from the following equation

$$
S_{n} \chi=\lambda \chi \Leftrightarrow \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b}
$$

We find the eigenvalues from the equation

$$
\left|\begin{array}{cc}
-\lambda & 1 \frac{\hbar}{2} \\
1 \frac{\hbar}{2} & -\lambda
\end{array}\right|=0 \Rightarrow \lambda= \pm \frac{\hbar}{2}
$$

The eigenspinors to S_{x} corresponding to the $+\frac{\hbar}{2}$ we get from

$$
\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{a}{b}=+\frac{\hbar}{2}\binom{a}{b}
$$

The two equations above are linearly dependent and one of them is

$$
a=b \Leftrightarrow \text { let } b=1 \text { and hence } a=1
$$

This gives the unnormalised spinor

$$
\binom{1}{1} \text { and after normalisation we have } \chi_{x+}=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

The other eigenspinor χ_{x-} has to be orthogonal to χ_{x+}. An appropriate choice is:

$$
\chi_{x-}=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

This eigenspinor χ_{x-} is orthogonal to the eigenspinor χ_{x+}.
Now we can expand the initial spinor χ in these eigenspinors of S_{x}.

$$
\chi=\frac{1}{\sqrt{39}}\binom{2+5 i}{3-i}=b_{+} \chi_{x+}+b_{-} \chi_{x-}
$$

The coefficient b_{+}is given by

$$
b_{+}=\chi_{x+}^{*} \chi=\frac{1}{\sqrt{78}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) *\binom{2+5 i}{3-i}=\frac{1}{\sqrt{78}}(2+5 i+3-i)=\frac{1}{\sqrt{78}}(5+4 i)
$$

A similar calculation gives b_{-}:

$$
b_{-}=\chi_{x+}^{*} \chi=\frac{1}{\sqrt{78}}\left(\begin{array}{ll}
1 & -1
\end{array}\right) *\binom{2+5 i}{3-i}=\frac{1}{\sqrt{78}}(2+5 i-3+i)=\frac{1}{\sqrt{78}}(-1+6 i)
$$

We may now check that $\left|b_{+}\right|^{2}+\left|b_{-}\right|^{2}=1$

$$
\left|b_{+}\right|^{2}+\left|b_{-}\right|^{2}=\frac{1}{78}(25+16+1+36)=1 \quad \text { ok }
$$

The probability (to get $+\frac{\hbar}{2}$) is given by $\left|b_{+}\right|^{2}$.

$$
\left|b_{+}\right|^{2}=\frac{1}{78}(25+16)=\frac{41}{78} \approx \mathbf{0 . 5 2 6}
$$

and (to get $-\frac{\hbar}{2}$) is given by $\left|b_{-}\right|^{2}$.

$$
\left|b_{-}\right|^{2}=\frac{1}{78}(1+36)=\frac{37}{78} \approx \mathbf{0 . 4 7 4}
$$

You may make the following check for consistency:

$$
<S_{x}>=\left(\frac{41}{78}\left(\frac{\hbar}{2}\right)+\frac{37}{78}\left(-\frac{\hbar}{2}\right)\right)=\frac{1}{39} \hbar
$$

The same result as in part a.
3. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
$x=r \sin \theta \sin \phi, y=r \sin \theta \cos \phi, z=r \cos \theta$ and hence
$x y=r^{2} \sin ^{2} \theta \sin \phi \cos \phi=r^{2} \sin ^{2} \theta\left(e^{i 2 \phi}-e^{-i 2 \phi}\right) / 4 i$ using the Euler relations) the appropriate spherical harmonics can now be identified $Y_{2,-2}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{-i 2 \phi}$ and $Y_{2,2}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{i 2 \phi}$ and we arrive at

$$
\begin{equation*}
\psi(\boldsymbol{r})=\psi(x, y, z)=N \cdot x y \cdot e^{-r / 3 a_{0}}=N \frac{r^{2}}{4 i} \sqrt{\frac{32 \pi}{15}}\left(Y_{2,2}-Y_{2,-2}\right) e^{-r / 3 a_{0}} \tag{2}
\end{equation*}
$$

As all the involved $Y_{l, m}$ have $l=2$ the probability to get $\mathbf{L}^{2}=2(2+1) \hbar^{2}=6 \hbar^{2}$ is one. For the operator L_{z} we note the two spherical harmonics have the same pre factor (one has -1 and the other has +1 but the absolute value square is the same) ie they will have the same probability. The probability to find $m=2 \hbar$ is $\frac{1}{2}$, for $m=1 \hbar$ is 0 , for $m=0 \hbar$ is 0 for $m=-1 \hbar$ is 0 , and for $m=-2 \hbar$ is $\frac{1}{2}$. As all the involved $Y_{l, m}$ have $l=2$ the probability to get $\mathbf{L}^{2}=2(2+1) \hbar^{2}=6 \hbar^{2}$ is one.
b. To calculate the expectation value $\langle r\rangle$ we need to normalise the given wave function if we wish to do the integral. In order to achieve this in a simple way is to identify the radial wave function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or equal to 3 . By inspection of eq (2) and 2 we find $n=3$ this function has the correct exponential and the correct power of $r\left(r^{2}\right)$ and hence $R_{3,2}(r)=\frac{2 \sqrt{2}}{27 \sqrt{5}}\left(\frac{Z}{3 a_{0}}\right)^{3 / 2}\left(\frac{Z r}{a_{0}}\right)^{2} e^{-Z r / 3 a_{0}}$. We also note that $Y_{2,2}$ and $Y_{2,-2}$ are normalised but the sum $\left(Y_{2,2}-Y_{2,-2}\right)$ is not normalised. As the normalisation integral will produce $1+1=2$, the sum has to be changed to $\left(\frac{1}{\sqrt{2}} Y_{2,2}-\frac{1}{\sqrt{2}} Y_{2,-2}\right)$ in order to be normalised. Note that $R_{3,2}(r)$ contains an r^{2} term as also a $e^{-r / 3 a_{0}}$ term. The wave function can now be completed to the following normalized wave function (note that we do not need to calculate the constant N as all separate parts of $\psi(r)$ are normalised by them selves)

$$
\psi(\boldsymbol{r})=\psi(x, y, z)=N \cdot x y \cdot e^{-r / 3 a_{0}}=R_{3,2}(r)\left(\frac{1}{\sqrt{2}} Y_{2,2}-\frac{1}{\sqrt{2}} Y_{2,-2}\right)
$$

From physics handbook page 292 you find

$$
\begin{gathered}
\langle r\rangle=\frac{1}{2}\left[3 n^{2}-l(l+1)\right]\left(\frac{a_{0}}{Z}\right)=\frac{1}{2}\left[33^{2}-2(2+1)\right]\left(\frac{a_{0}}{1}\right)=\frac{21}{2} a_{0}= \\
10.5 \cdot 0.5292 \AA=5.56 \AA .
\end{gathered}
$$

You may also do the integral directly like this (only the part depending on r are of interest as the angular parts just will be the normalising integral):

$$
\begin{gathered}
\langle r\rangle=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} d \phi d \theta d r r^{2} \sin (\theta) r\left|R_{3,2}(r)\right|^{2}\left|\frac{1}{\sqrt{2}} Y_{2,2}-\frac{1}{\sqrt{2}} Y_{2,-2}\right|^{2}= \\
\int_{0}^{\infty} d r r^{3}\left|R_{3,2}(r)\right|^{2}=\frac{21}{2} a_{0}=10.5 \cdot 0.5292 \AA=5.56 \AA .
\end{gathered}
$$

4. (a) $\langle H\rangle=\frac{1}{2} 0.25+\frac{1}{4} 0.95+\frac{1}{6} 2.12+\frac{1}{24} 3.23+\frac{1}{24} 4.79=1.05000 \approx 1.05 \mathrm{eV}$.

Uncertainty is defined by: $\langle\Delta H\rangle=\sqrt{\left\langle H^{2}\right\rangle-\langle H\rangle^{2}}$
$\left\langle H^{2}\right\rangle=\frac{1}{2} 0.25^{2}+\frac{1}{4} 0.95^{2}+\frac{1}{6} 2.12^{2}+\frac{1}{24} 3.23^{2}+\frac{1}{24} 4.79^{2}=2.39665 \approx 2.40 \mathrm{eV}^{2}$.
$\langle\Delta H\rangle=\sqrt{2.39665-1.05^{2}}=1.1376 \approx 1.14 \mathrm{eV}$
(b) The expression is not unique as we only know the probabilities which are the squares of the coefficients. In the evaluation of $\langle H\rangle$ and $\left\langle H^{2}\right\rangle$ only the probabilities are important thats why a different sign \pm is of no importance in this calculation.
One is:

$$
\Psi(z)=\frac{1}{\sqrt{2}} \psi_{1}(z)+\sqrt{\frac{1}{4}} \psi_{2}(z)+\frac{1}{\sqrt{6}} \psi_{3}(z)+\frac{\sqrt{1}}{24} \psi_{4}(z)+\frac{1}{24} \psi_{5}(z) .
$$

Another is: $\Psi(z)=\frac{1}{\sqrt{2}} \psi_{1}(z)+\sqrt{\frac{1}{4}} \psi_{2}(z)-\frac{1}{\sqrt{6}} \psi_{3}(z)-\frac{\sqrt{1}}{24} \psi_{4}(z)+\frac{1}{24} \psi_{5}(z)$.
(c) It would be lowered by a factor of 9 . (All eigenvalues change by a factor of 9)
5. Hydrogenic atoms have eigenfunctions $\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \varphi)$. Using the Collection of FORMULAE we find

$$
\begin{aligned}
& \psi_{100}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-Z r / a_{0}} \\
& \psi_{200}(\boldsymbol{r})=\left(\frac{Z^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \\
& \psi_{210}(\boldsymbol{r})=\left(\frac{Z^{3}}{32 \pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{a_{0}} \cos \theta e^{-Z r / 2 a_{0}} \\
& \psi_{21 \pm 1}(\boldsymbol{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \frac{Z r}{8 a_{0}} \sin \theta e^{ \pm i \varphi} e^{-Z r / 2 a_{0}}
\end{aligned}
$$

where a_{0} is the Bohr radius. The β-decay instantaneously changes $Z=1 \rightarrow Z=2$. According to the expansion theorem, it is possible to express the wave function $u_{i}(\boldsymbol{r})$ before the decay as a linear combination of eigenfunctions $v_{j}(\boldsymbol{r})$ after the decay as

$$
u_{i}(\boldsymbol{r})=\sum_{j} a_{j} v_{j}(\boldsymbol{r})
$$

where

$$
a_{j}=\int v_{j}^{*}(\boldsymbol{r}) u_{i}(\boldsymbol{r}) d^{3} r .
$$

The probability to find the electron in state j is given by $\left|a_{j}\right|^{2}$.
(a) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{200}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{8 \pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}}\left(1-\frac{2 r}{2 a_{0}}\right) e^{-2 r / 2 a_{0}} 4 \pi r^{2} d r \\
& =\frac{4}{a_{0}^{3}} \int_{0}^{\infty} e^{-2 r / a_{0}}\left(r^{2}-\frac{r^{3}}{a_{0}}\right) d r=\frac{4}{a_{0}^{3}}\left[2\left(\frac{a_{0}}{2}\right)^{3}-\frac{6}{a_{0}}\left(\frac{a_{0}}{2}\right)^{4}\right]=-\frac{1}{2} .
\end{aligned}
$$

Thus, the probability is $1 / 4=0.25$.
(b) For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{210}(Z=2)$ the θ-integral is

$$
\int_{0}^{\pi} \cos \theta \sin \theta d \theta=\frac{1}{2} \int_{0}^{\pi} \sin 2 \theta d \theta=\left[-\frac{\cos 2 \theta}{4}\right]_{0}^{\pi}=0
$$

For $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{21 \pm 1}(Z=2)$ the φ-integral is

$$
\int_{0}^{2 \pi} e^{ \pm i \varphi} d \varphi=0
$$

Thus, the probability to find the electron in a 2 p state is zero.
(c) Here $u_{i}=\psi_{100}(Z=1)$ and $v_{j}=\psi_{100}(Z=2)$. This gives

$$
\begin{aligned}
a & =\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2}\left(\frac{2^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} \int_{0}^{\infty} e^{-r / a_{0}} e^{-2 r / a_{0}} 4 \pi r^{2} d r=\frac{8 \sqrt{2}}{a_{0}^{3}} \int_{0}^{\infty} e^{-3 r / a_{0}} r^{2} d r \\
& =\frac{8 \sqrt{2}}{a_{0}^{3}} \frac{a_{0}^{3}}{3^{3}} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{8 \sqrt{2}}{27} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{8 \sqrt{2}}{27} \int_{0}^{\infty} 2 e^{-x} d x=\frac{16 \sqrt{2}}{27}
\end{aligned}
$$

Thus, the probability is $512 / 729 \approx 0.70233$.
(The probability to find the electron in $\psi_{100}(Z=2)$ is $512 / 729=0.702$. Therefore, the electron is found with 95% probability in one of the states 1 s or 2 s .)
(d) No l has to be less than n.

