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1. (a) ih̄ ∂2

∂t2
cosωt = −ih̄ω ∂

∂t
sinωt = −ih̄ω2 cosωt YES

(b) ∂
∂x
eikx = ikeikx YES

(c) ∂
∂x
e−ax

2
= −2axe−ax

2
NO

(d) ∂
∂x

cos kx = −k sin kx NO

(e) ∂
∂x
kx = k NO

(f) P̂ sin(kx) = sin(−kx) = − sin(kx) YES

(g) −ih̄ ∂
∂z
C(1 + z2) = −ih̄C(0 + 2z) NO

(h) − h̄
2
∂
∂z
Ce−3z = − h̄

2
C(−3)e−3z ∝ ψ(z) YES

(i) C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 =? This has to be done in some steps. Start by doing this derivative

first: − ∂2

∂z2
ze−

1
2
z2 = − ∂

∂z
(e−

1
2
z2 − z2e−

1
2
z2) = −(−ze− 1

2
z2 − 2ze−

1
2
z2 + z3e−

1
2
z2) =

3ze−
1
2
z2 − z3e−

1
2
z2 .

Now you go back to the start: C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 = C

2
(z3e−

1
2
z2 + 3ze−

1
2
z2 − z3e−

1
2
z2) =

C
2

(+3ze−
1
2
z2) = ∝ ψ(z) YES

2. a

The spinor is not normalised and we need to do this first:

1 = χ∗χ =| A |2 (2− 5i, 3 + i)

(
2 + 5i
3− i

)
=| A |2

(
| 2 + 5i |2 + | 3− i |2

)
=| A |2 (29 + 10) ,

and hence : A =
1√
39

Note an expectation value is always a real number, never a complex one! Even if you had taken
A to be a complex number like A = i√

39
it would not change the expectation value as the

expectation value below only involves | A |2.

< Sx >=
1

39
(2− 5i, 3 + i)

h̄

2

(
0 1
1 0

)(
2 + 5i
3− i

)
=

1

39
h̄

< Sy >=
1

39
(2− 5i, 3 + i)

h̄

2

(
0 −i
i 0

)(
2 + 5i
3− i

)
= −17

39
h̄

< Sz >=
1

39
(2− 5i, 3 + i)

h̄

2

(
1 0
0 −1

)(
2 + 5i
3− i

)
=

19

78
h̄

b
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Measurement along the x direction means: S = (1, 0, 0) · (Sx, Sy, Sz) = Sx. The idea is to expand
the initial spinor χ into the eigenspinors of Sx. So we start to calculate the eigenvalues and
eigenspinors to Sx. The spin operator Sx is

Sx =
h̄

2

(
0 1
1 0

)

we find the eigenvalues from the following equation

Snχ = λχ⇔ h̄

2

(
0 1
1 0

)(
a
b

)
= λ

(
a
b

)
(1)

We find the eigenvalues from the equation∣∣∣∣∣ −λ 1 h̄
2

1 h̄
2
−λ

∣∣∣∣∣ = 0⇒ λ = ± h̄
2

The eigenspinors to Sx corresponding to the + h̄
2

we get from

h̄

2

(
0 1
1 0

)(
a
b

)
= +

h̄

2

(
a
b

)

The two equations above are linearly dependent and one of them is

a = b⇔ let b = 1 and hence a = 1

This gives the unnormalised spinor(
1
1

)
and after normalisation we have χx+ =

1√
2

(
1
1

)

The other eigenspinor χx− has to be orthogonal to χx+. An appropriate choice is:

χx− =
1√
2

(
1
−1

)

This eigenspinor χx− is orthogonal to the eigenspinor χx+.

Now we can expand the initial spinor χ in these eigenspinors of Sx.

χ =
1√
39

(
2 + 5i
3− i

)
= b+χx+ + b−χx−

The coefficient b+ is given by

b+ = χ∗x+χ =
1√
78

(1 1) ∗
(

2 + 5i
3− i

)
=

1√
78

(2 + 5i+ 3− i) =
1√
78

(5 + 4i)

A similar calculation gives b− :

b− = χ∗x+χ =
1√
78

(1 − 1) ∗
(

2 + 5i
3− i

)
=

1√
78

(2 + 5i− 3 + i) =
1√
78

(−1 + 6i)

2



We may now check that | b+ |2 + | b− |2= 1

| b+ |2 + | b− |2=
1

78
(25 + 16 + 1 + 36) = 1 ok

The probability (to get + h̄
2
) is given by |b+|2.

|b+|2 =
1

78
(25 + 16) =

41

78
≈ 0.526

and (to get − h̄
2
) is given by |b−|2.

|b−|2 =
1

78
(1 + 36) =

37

78
≈ 0.474

You may make the following check for consistency:

< Sx >=

(
41

78
(
h̄

2
) +

37

78
(− h̄

2
)

)
=

1

39
h̄

The same result as in part a.

3. Rewrite the wave function in terms of spherical harmonics: (polar coordinates:
x = r sin θ sinφ, y = r sin θ cosφ, z = r cos θ and hence
xy = r2 sin2 θ sinφ cosφ = r2 sin2 θ(ei2φ − e−i2φ)/4i using the Euler relations) the appropriate

spherical harmonics can now be identified Y2,−2 = 1
4

√
15
2π

sin2 θe−i2φ and Y2,2 = 1
4

√
15
2π

sin2 θei2φ

and we arrive at

ψ(r) = ψ(x, y, z) = N · xy · e−r/3a0 = N
r2

4i

√
32π

15
(Y2,2 − Y2,−2)e−r/3a0 . (2)

As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is one. For the
operator Lz we note the two spherical harmonics have the same pre factor (one has -1 and the
other has +1 but the absolute value square is the same) ie they will have the same probability.
The probability to find m = 2h̄ is 1

2
, for m = 1h̄ is 0, for m = 0h̄ is 0 for m = −1h̄ is 0, and for

m = −2h̄ is 1
2
. As all the involved Yl,m have l = 2 the probability to get L2 = 2(2 + 1)h̄2 = 6h̄2 is

one.

b. To calculate the expectation value < r > we need to normalise the given wave function if we
wish to do the integral. In order to achieve this in a simple way is to identify the radial wave
function. As l is equal to 2 we know that n cannot be equal to 1 or 2 it has to be larger or
equal to 3. By inspection of eq (2) and 2 we find n = 3 this function has the correct exponential

and the correct power of r (r2) and hence R3,2(r) = 2
√

2
27
√

5

(
Z

3a0

)3/2 (
Zr
a0

)2
e−Zr/3a0 . We also note

that Y2,2 and Y2,−2 are normalised but the sum (Y2,2 − Y2,−2) is not normalised. As the
normalisation integral will produce 1+1=2, the sum has to be changed to ( 1√

2
Y2,2 − 1√

2
Y2,−2) in

order to be normalised. Note that R3,2(r) contains an r2 term as also a e−r/3a0 term. The wave
function can now be completed to the following normalized wave function (note that we do not
need to calculate the constant N as all separate parts of ψ(r) are normalised by them selves)

ψ(r) = ψ(x, y, z) = N · xy · e−r/3a0 = R3,2(r)

(
1√
2
Y2,2 −

1√
2
Y2,−2

)

3



From physics handbook page 292 you find

〈r〉 =
1

2

[
3n2 − l(l + 1)

] (a0

Z

)
=

1

2

[
3 32 − 2(2 + 1)

] (a0

1

)
=

21

2
a0 =

10.5 · 0.5292 Å = 5.56 Å.

You may also do the integral directly like this (only the part depending on r are of interest as
the angular parts just will be the normalising integral):

〈r〉 =
∫ ∞

0

∫ π

0

∫ 2π

0
dφ dθ dr r2 sin(θ) r | R3,2(r) |2

∣∣∣∣∣ 1√
2
Y2,2 −

1√
2
Y2,−2

∣∣∣∣∣
2

=

∫ ∞
0

dr r3 | R3,2(r) |2=
21

2
a0 = 10.5 · 0.5292 Å = 5.56 Å.

4. (a) 〈H〉 = 1
2
0.25 + 1

4
0.95 + 1

6
2.12 + 1

24
3.23 + 1

24
4.79 = 1.05000 ≈ 1.05eV.

Uncertainty is defined by: 〈∆H〉 =
√
〈H2〉 − 〈H〉2

〈H2〉 = 1
2
0.252 + 1

4
0.952 + 1

6
2.122 + 1

24
3.232 + 1

24
4.792 = 2.39665 ≈ 2.40eV2.

〈∆H〉 =
√

2.39665− 1.052 = 1.1376 ≈ 1.14eV

(b) The expression is not unique as we only know the probabilities which are the squares of the
coefficients. In the evaluation of 〈H〉 and 〈H2〉 only the probabilities are important thats
why a different sign ± is of no importance in this calculation.

One is: Ψ(z) = 1√
2
ψ1(z) +

√
1
4
ψ2(z) + 1√

6
ψ3(z) +

√
1

24
ψ4(z) + 1

24
ψ5(z).

Another is: Ψ(z) = 1√
2
ψ1(z) +

√
1
4
ψ2(z)− 1√

6
ψ3(z)−

√
1

24
ψ4(z) + 1

24
ψ5(z).

(c) It would be lowered by a factor of 9. (All eigenvalues change by a factor of 9)

5. Hydrogenic atoms have eigenfunctions ψnlm = Rnl(r)Ylm(θ, ϕ). Using the Collection of
formulae we find

ψ100(r) =
(
Z3

πa30

)1/2
e−Zr/a0

ψ200(r) =
(
Z3

8πa30

)1/2 (
1− Zr

2a0

)
e−Zr/2a0

ψ210(r) =
(

Z3

32πa30

)1/2
Zr
a0

cos θe−Zr/2a0

ψ21±1(r) =
(
Z3

πa30

)1/2
Zr
8a0

sin θe±iϕe−Zr/2a0

where a0 is the Bohr radius. The β-decay instantaneously changes Z = 1→ Z = 2. According
to the expansion theorem, it is possible to express the wave function ui(r) before the decay as a
linear combination of eigenfunctions vj(r) after the decay as

ui(r) =
∑
j

ajvj(r)

where
aj =

∫
v∗j (r)ui(r)d3r.

The probability to find the electron in state j is given by |aj|2.

4



(a) Here ui = ψ100(Z = 1) and vj = ψ200(Z = 2). This gives

a =

(
1

πa3
0

)1/2 (
23

8πa3
0

)1/2 ∫ ∞
0

e−r/a0
(

1− 2r

2a0

)
e−2r/2a04πr2dr

=
4

a3
0

∫ ∞
0

e−2r/a0

(
r2 − r3

a0

)
dr =

4

a3
0

[
2
(
a0

2

)3

− 6

a0

(
a0

2

)4
]

= −1

2
.

Thus, the probability is 1/4 = 0.25.

(b) For ui = ψ100(Z = 1) and vj = ψ210(Z = 2) the θ-integral is

∫ π

0
cos θ sin θdθ =

1

2

∫ π

0
sin 2θdθ =

[
−cos 2θ

4

]π
0

= 0.

For ui = ψ100(Z = 1) and vj = ψ21±1(Z = 2) the ϕ-integral is∫ 2π

0
e±iϕdϕ = 0.

Thus, the probability to find the electron in a 2p state is zero.

(c) Here ui = ψ100(Z = 1) and vj = ψ100(Z = 2). This gives

a =

(
1

πa3
0

)1/2 (
23

πa3
0

)1/2 ∫ ∞
0

e−r/a0e−2r/a04πr2dr =
8
√

2

a3
0

∫ ∞
0

e−3r/a0r2dr

=
8
√

2

a3
0

a3
0

33

∫ ∞
0

e−xx2dx =
8
√

2

27

∫ ∞
0

e−xx2dx =
8
√

2

27

∫ ∞
0

2e−xdx =
16
√

2

27

Thus, the probability is 512/729 ≈ 0.70233.

(The probability to find the electron in ψ100(Z = 2) is 512/729 = 0.702. Therefore, the
electron is found with 95% probability in one of the states 1s or 2s.)

(d) No l has to be less than n.
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