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The solutions are just suggestions. They may contain several alternative routes.

1. (a) i~ ∂2
∂t2

sinωt cosωt = i~ω ∂
∂t

(cos2 ωt− sin2 ωt) = −i~ω22(sinωt cosωt) ∝ ψ(t) YES

(b) i~ ∂2
∂t2

(cos2 ωt− sin2 ωt) = −i~ω4 ∂
∂t

(sinωt cosωt) = −i~ω24(cos2 ωt− sin2 ωt) ∝ ψ(t) YES

(c) ∂
∂x

sin kx = k cos kx � ψ(x) NO

(d) ∂
∂x
kx2 = k2x � ψ(x) NO

(e) C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 =? This has to be done in some steps. Start by doing this derivative

first: − ∂2

∂z2
ze−

1
2
z2 = − ∂

∂z
(e−

1
2
z2 − z2e− 1

2
z2) = −(−ze− 1

2
z2 − 2ze−

1
2
z2 + z3e−

1
2
z2) =

3ze−
1
2
z2 − z3e− 1

2
z2 .

Now you go back to the start: C
2

(z2 − ∂2

∂z2
)ze−

1
2
z2 = C

2
(z3e−

1
2
z2 + 3ze−

1
2
z2 − z3e− 1

2
z2) =

C
2

(+3ze−
1
2
z2) = ∝ ψ(z) YES

(f) ∂
∂x

(eikx + e−ikx) = ik(eikx − e−ikx) � ψ(x) NO

(g) P̂ cos(kx) = cos(−kx) = cos(kx) = ψ(x) YES

(h) −~
2
∂
∂z
Ce−ωz = −~

2
C(−ω)e−ωz ∝ ψ(z) YES

(i) −i~ ∂
∂z
C(1 + z3) = −i~C(0 + 3z2) � ψ(z) NO

2. A general time dependent solution is given by

Ψ(x, t = 0) =
∑
n

cnψn(x)e−iEnt/~

(a) In the present case with only two eigenstates we have energies E0 = 1
2
~ω and E1 = 3

2
~ω and

hence :

Ψ(x, t) = c0ψ0(x)e−iE0t/~ + c1ψ1(x)e−iE1t/~ =
1√
2
ψ0(x)e−i

1
2
~ωt/~ +

1√
2
ψ1(x)e−i

3
2
~ωt/~

and

Ψ(x, t) =
1√
2
ψ0(x)e−i

1
2
ωt +

1√
2
ψ1(x)e−i

3
2
ωt

(b) To calculate the time evolution of the expectation value of the kinetic energy we have to
calculate the following.

< Ek >=<
p2op
2m

>=

∫
1√
2

(ψ∗0e
+i 1

2
~ωt/~ + ψ∗1e

+i 3
2
~ωt/~)

p2op
2m

1√
2

(ψ0e
−i 1

2
~ωt/~ + ψ1e

−i 3
2
~ωt/~)dx

where pop = −i~ ∂
∂x

and for the square we get p2op = −~2 ∂2

∂x2
.

The two eigenfunctions in question are: ψ0(x) =
(

α√
π

)1/2
e−

1
2
α2x2 and

ψ1(x) =
(

α
2
√
π

)1/2
2αxe−

1
2
α2x2 where α =

√
mω/~ .
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We can proceed along several routes. The first one make use of that the operator pop is
Hermitian and we calculate the first derivative of the wave function and then identify the
result as eigen functions after that calculate < Ek > using the kronecker delta. The second
route just makes a brute calculation of the second derivative of the wave function and the
identify eigen functions and then calculate < Ek > using the kronecker delta. The third
route makes use of the step operators a+ and a−. So non of the routes do calculate any
integrals at all!

The first route:
This makes use of the fact that the operator pop is Hermitian. First we need to make some
derivatives. The results is written in terms of eigen functions. For the ground state eigen
function:

∂

∂x
ψ0(x) =

(
α√
π

)1/2

(−α2x)e−
1
2
α2x2 = −α

2

√
2

(
α

2
√
π

)1/2

(2αx)e−
1
2
α2x2 = − α√

2
ψ1(x)

For the first excited state eigen function:

∂

∂x
ψ1(x) =

(
α

2
√
π

)1/2

(2α)e−
1
2
α2x2 −

(
α

2
√
π

)1/2

(2α3x2)e−
1
2
α2x2 = (1)

√
2α

(
α√
π

)1/2

e−
1
2
α2x2 − α

(
α

8
√
π

)1/2 (
4α3x2 − 2

)
e−

1
2
α2x2 − 2α

(
α

8
√
π

)1/2

e−
1
2
α2x2 = (2)

(
√

2− 1√
2
αψ0(x)− αψ2(x) =

1√
2
αψ0(x)− αψ2(x) (3)

Now we return to the calculation of < Ek > and make use of the orthonormallity of the
eigenfunctions.

< Ek >=<
p2op
2m

>=

∫
p+op
2m

1√
2

(ψ∗0e
+i 1

2
~ωt/~ + ψ∗1e

+i 3
2
~ωt/~)

pop
2m

1√
2

(ψ0e
−i 1

2
~ωt/~ + ψ1e

−i 3
2
~ωt/~)dx =

1

2

~2

2m

∫
(i
α√
2
ψ∗1(x)e+i

1
2
~ωt/~ − i( 1√

2
αψ∗0(x)− αψ∗2(x))e+i

3
2
~ωt/~)

·(−i α√
2
ψ1(x)e−i

1
2
~ωt/~ + i(

1√
2
αψ0(x)− αψ2(x))e−i

3
2
~ωt/~) =

1

2

~2

2m
(
α2

2
+
α2

2
+ α2) =

1

2

~2

2m
2α2 =

1

2
~ω

Second route:
This route just takes a second derivative of the wave function and expresses the result in
terms of eigen functions. First we need to make some more derivatives as we need second
derivatives as well. For the groundstate eigen function:

∂2

∂x2
ψ0(x) =

(
α√
π

)1/2

(−α2)e−
1
2
α2x2 +

(
α√
π

)1/2

α4x2e−
1
2
α2x2

For the first excited state eigen function:

∂2

∂x2
ψ1(x) =

(
α

2
√
π

)1/2

(−2α3x)e−
1
2
α2x2−

(
α

2
√
π

)1/2

(4α3x)e−
1
2
α2x2+

(
α

2
√
π

)1/2

(2α5x3)e−
1
2
α2x2

These derivatives can be rewritten in terms of eigenfunctions of the harmonic oscillator:
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∂2

∂x2
ψ0(x) = −α2

(
α√
π

)1/2

e−
1
2
α2x2 + α2

(
α√
π

)1/2

α2x2e−
1
2
α2x2 =

−α2

(
α√
π

)1/2

e−
1
2
α2x2 + α2

√
8

4

(
α

8
√
π

)1/2

4α2x2e−
1
2
α2x2 =

α2

√
2
ψ2(x) +

α2

2

(
α√
π

)1/2

e−
1
2
α2x2 − α2

(
α√
π

)1/2

e−
1
2
α2x2 =

α2

√
2
ψ2(x)− α2

2
ψ0(x)

∂2

∂x2
ψ1(x) = α2

√
6

2

(
α

48
√
π

)1/2

(8α3x3)e−
1
2
α2x2 +

(
α

2
√
π

)1/2

(−2− 4)α3x)e−
1
2
α2x2 =

α2

√
6

2
ψ3(x) + α2

√
6

2

(
α

48
√
π

)1/2

12αxe−
1
2
α2x2 −

(
α

2
√
π

)1/2

(6)α3xe−
1
2
α2x2 =

α2

√
6

2
ψ3(x) +

(
α

2
√
π

)1/2

(3)α3xe−
1
2
α2x2 −

(
α

2
√
π

)1/2

(6)α3xe−
1
2
α2x2 =

α2

√
6

2
ψ3(x)− α23

2

(
α

2
√
π

)1/2

2αxe−
1
2
α2x2 = α2

√
6

2
ψ3(x)− α23

2
ψ1(x)

(4)

Now we return to the calculation of < Ek >.

< Ek >=<
p2op
2m

>=

∫
1√
2

(ψ∗0e
+i 1

2
~ωt/~ + ψ∗1e

+i 3
2
~ωt/~)

p2op
2m

1√
2

(ψ0e
−i 1

2
~ωt/~ + ψ1e

−i 3
2
~ωt/~)dx

=
1

2

~2

2m

∫
(ψ∗0e

+i 1
2
~ωt/~ + ψ∗1e

+i 3
2
~ωt/~) ·

(−1)((α2

√
6

2
ψ3(x)− α23

2
ψ1(x))e−i

3
2
~ωt/~ + (−α

2

2
ψ0(x) +

α2

√
2
ψ2(x))e−i

1
2
~ωt/~) =

To calculate the integrals is simple it is just a matter of applying the kronecker delta.

=
1

2

~2

2m

(
α23

2
+ α21

2

)
=
α2~2

2m
=
~ω
2

The third route:
This route makes use of the stepping operators. Their action on the eigenfunctions are
a+ψn(x) =

√
n+ 1ψn+1(x) and a−ψn(x) =

√
nψn−11(x). The momentum operator in terms

of the stepping operators is

p = i

√
~mω

2
(a+ − a−)

The operator for the kinetic energy will be:

Ek =
p2

2m
=

1

2m

(
−~mω

2

)
(a+ − a−)(a+ − a−) = −~ω

4
(a+a+ − a+a− − a−a+ + a−a−)
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With the operator for Ek we can now do the calculation:

Ek = −~ω
4

1

2

∫
(ψ∗0(x) + ψ∗1(x))(a+a+ − a+a− − a−a+ + a−a−)(ψ0(x) + ψ1(x))dx =

the two operators a+a+ and a−a− will step functions out of range and these two integrals
will hence be zero so continuing for the results of the two mixed step operators

a+a−(ψ0(x) + ψ1(x)) = a−(ψ1(x) +
√

2ψ2(x)) = ψ0(x) + 2ψ1(x) and

a−a+(ψ0(x) + ψ1(x)) = a+ψ0(x) = ψ1(x)

Ek =
~ω
4

1

2

∫
(ψ∗0(x) + ψ∗1(x))(ψ0(x) + 2ψ1(x) + ψ1(x))dx =

~ω
4

1

2
(1 + 3) =

~ω
2

3. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− ~
2

2m

d2

dx2
Ψ(x, y)− ~2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− ~
2

2m

d2

dx2
ψx(x)− ~2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− ~
2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

~2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(
Ψ(−a

2
) = Ψ(a

2
) = 0

)
into

account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the

condition
∫ a/2
−a/2 | Ψ |

2 dx = 1. The condition sin(ka
2

) = 0 gives ka
2

= π
2
∗ (even− integer). The

solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 2, 4, 6, ... (5)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√
2

a
cos(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 3, 5, ... (6)
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The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (7)

In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 2, 3, ... (8)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√
2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 2, 3, ... (9)

ψn(x) =
√

2
a

sin(nπx
a

+ nπ
2

) =
√

2
a

(
sin(nπx

a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)
. We see that we recover

the solution in eq (5), (6) and (7) as we let n run from 1 to ∞.

b) The ground state eigenfunction is given by (using eq. (6))

Ψn=1,m=1(x, y) = ψ1(x) · ψ1(y) =

√
2

a
cos(

πx

a
) ·
√

2

a
cos(

πy

a
) (10)

The next lowest state eigenfunction is given by (using eq. (6) and (5)). Note there are two
eigenfunctions with the same energy (Ψn=1,m=2(x, y)) you may use either one of them.

Ψn=2,m=1(x, y) = ψ2(x) · ψ1(y) =

√
2

a
sin(2

πx

a
) ·
√

2

a
cos(

πy

a
) (11)

Orthogonality is defined as∫
x

∫
y

Ψn1,m1(x, y)Ψn2,m2(x, y) = δn1,n2 δm1,m2 (12)

by explicit calculation∫ a/2

x=−a/2

∫ a/2

y=−a/2

(
2

a
cos(

πx

a
) · cos(

πy

a
)

)
·
(

2

a
sin(2

πx

a
) · cos(

πy

a
)

)
= calculations = 0 (13)

this is a separable integral (in x and y), suggestion do the integral in x first as this will be zero
as they belong to different eigenvalues. Thus the calculation ends with a zero as it should.

4. (a) The parity of a hydrogen eigenfunction ψnlml
(r) is given by (−1)l. The given wave function

Ψ(r) consists of eigenfunctions with different parity. Hence Ψ(r) has no definite parity.
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(b) The probability is given by the absolute square of the coefficients.
(Ψ(r, t = 0) = 1√

15
(3ψ100(r)− 2ψ210(r) + ψ310(r)− ψ322(r)))

The probabilities are (in order) 9
15

, 4
15

, 1
15

, 1
15

. as a check they sum up to 1 as they should
do.

(c) The energy of a single eigenstate is given by: En = −13.56
n2 eV. The expectation value is

given by < E >= 9
15

(−13.56
12

) + 4
15

(−13.56
22

) + 1
15

(−13.56
32

) + 1
15

(−13.56
32

) =
−13.56( 9

15
+ 4

60
+ 1

135
+ 1

135
) = −9.240889 ≈ −9.24 eV

The operator L2 has eigenvalues ~2l(l + 1). The expectation value is given by
< L2 >= 9

15
· 0 + 4

15
(~21(1 + 1)) + 1

15
(~21(1 + 1)) + 1

15
(~22(2 + 1)) = 4·2+2+6

15
~2 = 16

15
~2

The operator Lz has eigenvalues ~ml. The expectation value is given by
< Lz >= 9

15
· 0 + 4

15
· 0 + 1

15
· 0 + 1

15
(~2) = 2

15
~

5. Use the spin matrixes to evaluate the expectation values.

< Sx >=
1

9
(2 + i, 2)

~
2

(
0 1
1 0

)(
2− i

2

)
=

4

9
~

< Sy >=
1

9
(2 + i, 2)

~
2

(
0 −i
i 0

)(
2− i

2

)
=

2

9
~

< Sz >=
1

9
(2 + i, 2)

~
2

(
1 0
0 −1

)(
2− i

2

)
=

1

18
~

If one squares a spin matrix σ2
i you will find a result proportional to the unit matrix for all three

indecies x, y or z.

S2
x =

~2

4

(
0 1
1 0

)(
0 1
1 0

)
=
~2

4

(
1 0
0 1

)
We arrive at:

< S2
x >=< S2

y >=< S2
z >= ~2

1

36
(2 + i, 2)

(
1 0
0 1

)(
2− i

2

)
=

1

4
~2
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