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Solution to written exam in QUANTUM PHYSICS F0047T

Examination date: 2018-03-13
The solutions are just suggestions. They may contain several alternative routes.

1. (a) zhgtg sinwt cos wt = ihw$ (cos® wt — sin® wt) = —ihw?2(sinwt coswt) o< P(t) YES

(b) zhdtg (cos® wt — sin® wt) = —ihwd $ (sinwt coswt) = —ihw?4(cos® wt — sin® wt) oc P(t) YES

(¢) Lsinkr = kcoskx » (x) NO
)
)

oz
(d) Zka? = k2z » @Z)(m) NO

2 1 . . . . . .
(e %(22 — %)ze 2% =7 This has to be done in some steps. Start by doing this derivative
2 1 2 2 1.2 1.2 1.2 1.2
first: —59226’5 = daz(e 37— 22737 ) = —(—ze ¥ —2ze7 2% 4 28¢727) =
_1, 3 1,2
dze 2% — zve" 27
2 1.2 1.2 1.2 1.2
Now you go back to the start: £ (2% — %)26_52 = Y(2Be2" 4 3ze727 — 2l 27 =

C(+3z¢727) = x ¥(z) YES

(f) Z(e™ 4 e7™) = ik(e** — e=**) % (z) NO
(2) Pcos(k;x) = cos(—kx) = cos(kx) =¢(z) YES
(h) —22Ce~* = —LC(—w)e™* o 9(z) YES

i)

—ihZC(1+ 2%) = —ihC(0 + 32%) = ¥(z) NO

2. A general time dependent solution is given by

U(z,t=0)=>_ cothy(a)e /"

n

(a) In the present case with only two eigenstates we have energies Fy = %hw and B = %hw and
hence :

1 )
_¢1 (aj)e—z%fuut/h

1 —ithwt/h
—1Yplx)e "2 +
bo(@) V2

U(z,t) = Co¢0($)€_iEOt/h + Cl%@)@_mlt/h - V2

and

%zpo(x)ei%m " %%(w)eiiwt

(b) To calculate the time evolution of the expectation value of the kinetic energy we have to
calculate the following.

U(z,t) =

po * i= % i3 po il Z "
<Ek >:< P /\/_ ¢ +1 ﬁwt/ﬁ+¢ +1 ﬁwt/ﬁ) D 7(,¢) o€ ﬁwt/h+¢e 3 t/h)d
where p,, = —iha% and for the square we get pgp _R2 88;2

/
The two eigenfunctions in question are: 1y(z) = (\%) e~22"" and

« 1/2 —1,252
P1(x) = (ﬁ) 2are 2 where a = /mw/h .
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We can proceed along several routes. The first one make use of that the operator p,, is
Hermitian and we calculate the first derivative of the wave function and then identify the
result as eigen functions after that calculate < E} > using the kronecker delta. The second
route just makes a brute calculation of the second derivative of the wave function and the
identify eigen functions and then calculate < Ej > using the kronecker delta. The third
route makes use of the step operators a;, and a_. So non of the routes do calculate any
integrals at all!

The first route:

This makes use of the fact that the operator p,, is Hermitian. First we need to make some
derivatives. The results is written in terms of eigen functions. For the ground state eigen
function:

grte) = (G5) ot < 0 (5 et Gt

For the first excited state eigen function:

(%%(:B) = (%)U? (2a)e 2% — (%)W (20°2%)e 22" = (1)

(e 1/2 1.2.2 [0 1/2 1.2.2 (0% 1/2 1.2 2
\/ECV (ﬁ) e 2% _ o (m> (40(31'2 — 2) e 247" 92« (—Sﬁ) A — (2)

(V3 %awx) — apo(a) = %a%@) —aty(r) (3)

Now we return to the calculation of < Fj > and make use of the orthonormallity of the
eigenfunctions.

2
< B, >=< Pop >:/pop 1 (et iEmt/h 4 oti }‘uut/h)pop B LS Ly

2m 2m \/2 2m /2
U (@) — i () — (@) 3N

V2
(—i 2 ()e—iBwt/h ia ) — ot (2))e—iahwt/hy —
( \/§¢1() +(\/§ bo(x) — aty(z)) )

1 a* o 0 18 1
e — 2 90% = “hw
somlzg Tt ) 22m0‘ 2

1 h?
22m

(iﬁ

Second route:

This route just takes a second derivative of the wave function and expresses the result in
terms of eigen functions. First we need to make some more derivatives as we need second
derivatives as well. For the groundstate eigen function:

82 (0} 1/2 9 1.2..2 (6% 1/242 1,22
@w(](x) = (ﬁ) (—Oé )6_§a r -+ (ﬁ) o x €_§a *

For the first excited state eigen function:

0 a 12 1,22 o 1/2 1,22 (e} 1/2 1,22
@W@ - <m) (—2a°z)e72" —<ﬁ> (4a’x)e 2" —|—(—2\/7_T) (2a°x3)e 2"

These derivatives can be rewritten in terms of eigenfunctions of the harmonic oscillator:
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Now we return to the calculation of < E; >.

2 2
Do 1 * it % i3 i Po 1 —iihw —i2

< B, >=< 2;; >:/E<¢Oe+ %Mt/h—l—@ble—i_ gﬁwt/f) ﬁ %(,‘poe éf t/h_|_wle gﬁwt/Pi)d:L_
2 q

= %;_m <w8€+i%}wt/h + wreﬂgfwt/h) )

(D (o) = e I (<) + Sva(a)e B -

To calculate the integrals is simple it is just a matter of applying the kronecker delta.

1 n? 99 n o1 o’h? hw
= —— o — o — = =
22m 2 2

2m 2

The third route:
This route makes use of the stepping operators. Their action on the eigenfunctions are

a U, (z) = vVn+ 1, (z) and a_1,(x) = \/n,_11(x). The momentum operator in terms

of the stepping operators is
. [hmw

The operator for the kinetic energy will be:

__) (a4 — a)(ay — a_) = —L(apay — apa_ —a_as +a_a_)



With the operator for Fj; we can now do the calculation:

B = _% %/WS@) + 1) (aray —ara. —a_ay +a_a)(Po(x) + i(x))dr =

the two operators a,a, and a_a_ will step functions out of range and these two integrals
will hence be zero so continuing for the results of the two mixed step operators
ara_(¥o(z) + ¥1(2)) = a-(Y1(2) + V20 ()) = Yo(2) + 2¢1 () and
a—ay (tho(x) + ¢1(x)) = ayo(r) = a1 (2)
B =22 5 [0 + 01 @) (o) + 260(0) + () = 25143 = B

1
2 4 2

3. This is a 2 dimensional problem with a Schrodinger equation (where V(z,y) = 0) like

h? d? h? d?
%y S, — BV
2m de (x7y) 2m dy2 (‘I?y) (x7y)
This equation is separable and the ansatz W(x,y) = ¥(x) * ¥ (y) gives the following result

n? d? h? d?

“amar W T o an

Uy(y) = Extpa () + Eytby(y)

ie two independent one dimensional Schrédinger equations one for the variable z and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
dimensional solution. To find the eigenfunctions we need to solve the Schrédinger equation
which is (in the region where V() is zero)
h? d? d? 2mFE
——— U =FEV - — U+ k*¥ =0 where k* =
2m dx? dz? + v h?

Solutions are of the kind:

U(z) = Acoskx + Bsinkzx

Now we need to take the boundary conditions for the wave function ¥ (¥(—%) = ¥(%) = 0) into

account. i i I I

Acos(—g) + Bsin(—;a) =0 and Acos(g) + Bsin(g) =0
Adding the two conditions gives: cos(%) = 0 and subtracting them gives sin(£2) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A =0 and we get the following solution: The normalising constant B = \/g you get from the

condition ffé% | ¥ |2 dz = 1. The condition sin(£) = 0 gives 2 = Z x (even — integer). The
solution is:

n?m?h?

W Where n = 2, 4, 6, (5)
a

2
() = \/jsin(@) with eigenenergys E, =
a a

In a similar way the other function is analysed (A = 0) which gives: The condition cos(%2) =0

2
gives 2 = I x (odd — integer). The solution is:

nwx n?m2h?

2
n(z) = \/;COS(T) with eigenenergys E,, = SN where n=1,3,5, ... (6)



4.

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Um(2,y) = ¥n(x) - ¥ (y) eigenenergys E, ,, = E, + E,where n =1,2,,. and m =1,2,,. (7)

In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: ¥ (¥(0) = ¥(a) = 0) into account. In this case the solution is
for these boundary conditions:

2 . onmr. .. n?m?h?
p(x) = \/gsm(T) with eigenenergys E,, = TN where n=1,2,3, .. (8)

This solution has to be adapted to the boundary conditions related to this exam problem:

5 2252
Un(x) = \/jsin(m(:c + g)) with eigenenergys E, T where n=1,23,... (9)
a

a 2 ~ oMa?

Yn(x) = \/Esm(”” + %) = \/5 (sin(222) - cos(™T) 4 cos(™2£) - sin(4")). We see that we recover

the solution in eq (5), (6) and (7) as we let n run from 1 to oo.

b) The ground state eigenfunction is given by (using eq. (6))

\Ijn:1,m:1(-r7y) wl \/jCOS T \/jc S Wy (]‘O)

The next lowest state eigenfunction is given by (using eq. (6) and (5)). Note there are two
eigenfunctions with the same energy (V,—1 m—2(2,y)) you may use either one of them.

Vo (2.9) = ) ) = | 2 sin ™) 2 cox(T) (1)

a a

Orthogonality is defined as

//\I’m,m1($ay>\1'n2,mz (a:,y) = Ony.na Omy,mo (12>
zJy

by explicit calculation

a/2 a/2 2 2
/ / (— cos(ﬂ) : cos(@)> . (— sin(2ﬁ) . COS(E)) = calculations = 0 (13)
v=—a/2 Jy=—aj2 \ O a a a a a

this is a separable integral (in = and y), suggestion do the integral in x first as this will be zero
as they belong to different eigenvalues. Thus the calculation ends with a zero as it should.

(a) The parity of a hydrogen eigenfunction ), (r) is given by (—1)". The given wave function
U(r) consists of eigenfunctions with different parity. Hence ¥(r) has no definite parity.
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(b) The probability is given by the absolute square of the coefficients.
(U(r,t=0)= \/% (3100(r) — 2¢210(r) + P310(r) — P322(T)))

9 4 1 1

The probabilities are (in order) 3z, 1z, 1z, 75- as a check they sum up to 1 as they should

do.
(c) The energy of a single eigenstate is given by: E, = — 137’1'5’6 eV. The expectation value is
given by < B >= &(—156) 1 4(_ 56y 1 C1mge) 11150y

—13.56(55 + 55 + 1335 + 135) = —9.240889 ~ —9.24 eV
The operator L? has eigenvalues h%[(l + 1). The expectation value is given by
<L2>= 2.0+ (P11 + 1)) + = (F*1(1 4+ 1)) + £ (h?2(2 + 1)) = 2232462 — 102
The operator L. has eigenvalues hm;. The expectation value is given by
<L,>=3%-04+%-0+1-0+(h2) =2£h

5. Use the spin matrixes to evaluate the expectation values.

1 . h (0 1 2—1 4
1 ) h (0 —i 2—1 2

1 . h(1 0 2—1 1

If one squares a spin matrix o? you will find a result proportional to the unit matrix for all three

indecies x,y or z.
s N[0 1 0 1 B2 (10
Se=— S
T4 \10 10 4\ 0 1

1 1 0 2—1 1
2 2 2 2 : Li2
<5$>—<5y>—<5z>—7i36(2+Z72)<0 )( )_4h

We arrive at:



