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The solutions are just suggestions. They may contain several alternative routes.

1. (a) Let the commutator act on a wave function Ψ(y) and py = −i~ d
dy

[y2, p2
y]Ψ(y) = −~2(y2 d

2Ψ(y)
dy2
− d2(y2Ψ(y))

dy2
) = −~2

(
y2 d

2Ψ(y)
dy2
− y2 d

2Ψ(y)
dy2
− 4y dΨ(y)

dy
− 2Ψ(y)

)
=

+~22Ψ(y) + 4y~2 dΨ(y)
dy

= (+~22 + i4~ypy) Ψ(y) concluding for the commutator:

[y2, p2
y] = +2~2 + 4i~ypy = +2~2 + 4~2y d

dy
.

(b) The energy levels for a hydrogen like system are given by: En = −13.6Z
2

n2 [eV], here we have
Z = 4 : ∆E = E(2s)− E(1s) = E2 − E1 = −13.54 · (16

22
− 16

12
) = 13.54 · 16·3

4
= 162.48 eV

(c) The angular part of the wave function can be written as a spherical harmonic:

3 cos2 θ − 1 ∝ Y20

Which gives l = 2 och m = 0. The part depending on r (r2/a2
µ)e−r/3aµ corresponding to the

principal quantum number n = 3 och l = 2 consistent with Y20.

2. (a) The parity of a hydrogen eigenfunction ψnlml(r) is given by (−1)l. The given wave function
Ψ(r) consists of eigenfunctions with different parity. Hence Ψ(r) has no definite parity.

(b) The probability is given by the absolute square of the coefficients.
(Ψ(r, t = 0) = 1√

15
(3ψ100(r)− 2ψ210(r) + ψ310(r)− ψ322(r)))

The probabilities are (in order) 9
15

, 4
15

, 1
15

, 1
15

. as a check they sum up to 1 as they should
do.

(c) The energy of a single eigenstate is given by: En = −13.56
n2 eV. The expectation value is

given by < E >= 9
15

(−13.56
12

) + 4
15

(−13.56
22

) + 1
15

(−13.56
32

) + 1
15

(−13.56
32

) =
−13.56( 9

15
+ 4

60
+ 1

135
+ 1

135
) = −9.240889 ≈ −9.24 eV

The operator L2 has eigenvalues ~2l(l + 1). The expectation value is given by
< L2 >= 9

15
· 0 + 4

15
(~21(1 + 1)) + 1

15
(~21(1 + 1)) + 1

15
(~22(2 + 1)) = 4·2+2+6

15
~2 = 16

15
~2

The operator Lz has eigenvalues ~ml. The expectation value is given by
< Lz >= 9

15
· 0 + 4

15
· 0 + 1

15
· 0 + 1

15
(~2) = 2

15
~

3. Rewrite L2
x + L2

y = L2 − L2
z, which gives the Hamiltonian

H =
L2 − L2

z

2~2
+
L2
z

3~2
.

The eigenfunctions are Yl,m

HYl,m =

(
L2 − L2

z

2~2
+
L2
z

3~2

)
Yl,m =

(
l(l + 1)~2 −m2~2

2~2
+
m2~2

3~2

)
Yl,m.

Hence the energies are:

El,m =

(
l(l + 1)

2
− m2

6

)
.
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The lowest (ground state) energy is E0,0 = 0 (l = 0 no rotation).

l = 1→ m = 0,±1, gives E1,0 = 1eV E1,±1 = 5
6
eV

l = 2→ m = 0,±1,±2, gives E2,0 = 3eV E2,±1 = 17
6

eV E2,±2 = 7
3
eV

and so on.

4. a) There are 4 states the system can have with the energys and (degeneracys) ~ω (1), 2~ω (2)
and 3~ω (1). The partition sum is given by:

Z =

n1=1,n2=1∑
n1=0,n2=0

e−(n1+n2+1.0)~ω/kBT = e−1.0~ω/kBT + 2e−2.0~ω/kBT + e−3.0~ω/kBT

b) There is one state of the lower energy and there are two states with the next higher energy.
The probability to find the system in a state of energy is proportional to the Boltzmann
factor, we arrive at the following equation for the probabilities.

1e−1,0~ω/kBT

Z
=

2e−2,0~ω/kBT

Z
(1)

and this reduces to e1~ω/kBT = 2 which evaluates to T = 1~ω
kB ln 2

.

c) The partition sum at this specific temperature is given by: (kBT = 1~ω
ln 2

) ( 1
kBT

= ln 2
1~ω ) we

arrive at the following

Z = e−1.0~ω/kBT + 2e−2.0~ω/kBT + e−3.0~ω/kBT = e−1.0 ln 2 + 2e−2.0 ln 2 + e−3.0 ln 2 =

1

2
+ 2

1

4
+

1

8
=

1

2
+

1

2
+

1

8
= 1 +

1

8
=

9

8

The probability P will be (put Z into one of the terms in eq (1).

P =
e−1,0 ln 2

9
8

=
1

2
· 8

9
=

4

9
≈ 0.444...

As a check we can calculate for the state with the highest energy

P3 =
e−3,0 ln 2

9
8

=
1

8
· 8

9
=

1

9
≈ 0.111...

and we can easily conclude the probabilities add up to one.

5. Same/similar as problem 4.4 in Bransden & Joachain. In the region where the potential is zero
(x < 0) the solutions are of the traveling wave form eikx and e−ikx, where k2 = 2mE/~2. A plane
wave ψ(x) = Aei(kx−ωt) describes a particle moving from x = −∞ towards x =∞. The
probability current associated with this plane wave is
j = ~

2mi
| A |2 (e−ikx ∂

∂x
e+ikx − e+ikx ∂

∂x
e−ikx) =| A |2 ~

m
k =| A |2 v

A plane wave ψ(x) = Bei(−kx−ωt) describes a particle moving the opposite direction from x =∞
towards x = −∞. The probability current associated with this plane wave is
j = ~

2mi
| B |2 (e+ikx ∂

∂x
e−ikx − e−ikx ∂

∂x
e+ikx) = − | B |2 ~

m
k = − | B |2 v
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a Solution for the region x > 0 where the potential is V0 = 4.5eV. The potential step is larger
than the kinetic energy 2.0 eV of the incident beam. The particle may therefore not enter
this region classically. It will be totally reflected. In quantum mechanics we perform the
following calculation: The two solutions for the two regions are:

Ψ(x) =

{
Aeikx +Be−ikx for x < 0 where k2 = 2mE/~2

Ceκx +De−κx for x > 0 where κ2 = 2m(V0 − E)/~2

we can put C = 0 as this part of the solution would diverge, and is hence not physical, as x
approaches ∞. At x = 0 both the wavefunction and its derivative have to be continous
functions, as the potential is everywhere finite. The derivative is:

∂Ψ(x)

∂x
=

{
Aikeikx −Bike−ikx

−Dκe−κx

At x = 0 we arrive at the following two equations:

{
A+B = D

iAk − iBk = −Dκ solving for

{ D
A

= 2k
k+κ

B
A

= k−iκ
k+iκ

solving for


D
A

= 2

1+i
√
V0/E−1

B
A

=
1−i
√
V0/E−1

1+i
√
V0/E−1

We can now calculate the coeficient of reflection, R The coeficients represent the following
amplitudes: A is the incident beam, B is the reflected beam and C is the transmitted
beam. The associated probability currents are denoted jA, jB and jC . Conservation yields
jA = jB + jC . Hence we can define the coeficient of reflection as the fraction of reflected
flux R = |jB |

|jA|
and the coeficient of transmission as T = |jC |

|jA|{
R = |jB |

|jA|
= B2k

A2k
= 1

This is easily seen from the ratio B/A being the ratio of two complex number where one is
the complex conjugate of the other and therefore having the same absolute value.
Imidiately follows that T = 0 as the currents have to be conserved.

(b+c) Solution for the region x > 0 where the potential is V0 = 4.5eV. The potential step is
smaller than the kinetic energy 7.0eV or 5.0eV of the incident beam. The particle may
therefore enter this region classically. It will however lose some of its kinetic energy. In
quantum mechanics there is a probabillity for the wave to be reflected as well. The two
solutions for the two regions are:

Ψ(x) =

{
Aeikx +Be−ikx for x < 0 where k2 = 2mE/~2

Ceik
′x +De−ik

′x for x > 0 where k′2 = 2m(E − V0)/~2

whe can put D = 0 as there cannot be an incident beam from x =∞. At x = 0 both the
wavefunction and its derivative have to be continous functions. The derivative is:

∂Ψ(x)

∂x
=

{
Aikeikx −Bike−ikx

Cik′eik
′x

At x = 0 we arrive at the following two equations:{
A+B = C

Ak −Bk = Ck′
solving for

{ C
A

= 2k
k+k′

B
A

= k−k′
k+k′

solving for


C
A

= 2
√
E√

E+
√
E−V0

B
A

=
√
E−
√
E−V0√

E+
√
E−V0
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The coeficients represent the following amplitudes: A is the incident beam, B is the
reflected beam and C is the transmitted beam. The associated probability currents are
denoted jA, jB and jC . Conservation yields jA = jB + jC . Hence we can define the
coeficient of reflection as the fraction of reflected flux R = |jB |

|jA|
and the coeficient of

transmission as T = |jC |
|jA|

For the two cases in part b and c the coeficients are: R = |jB |
|jA|

= B2k
A2k

=
(
B
A

)2
=
(√

E−
√
E−V0√

E+
√
E−V0

)2

=
(√

5.0−
√

0.5√
5.0+

√
0.5

)2

= 0.26987

T = |jC |
|jA|

= C2k′

A2k
=
(
C
A

)2
√
E−V0√
E

=
(

2
√
E√

E+
√
E−V0

)2 √
E−V0√
E

=
(

2
√

5.0√
5.0+

√
0.5

)2 √
0.5√
5.0

= 0.73013

 R = |jB |
|jA|

= B2k
A2k

=
(
B
A

)2
=
(√

E−
√
E−V0√

E+
√
E−V0

)2

=
(√

7.0−
√

2.5√
7.0+

√
2.5

)2

= 0.063437

T = |jC |
|jA|

= C2k′

A2k
=
(
C
A

)2
√
E−V0√
E

=
(

2
√
E√

E+
√
E−V0

)2 √
E−V0√
E

=
(

2
√

7.0√
7.0+

√
2.5

)2 √
2.5√
7.0

= 0.936563

The last result could also be reached by T +R = 1.
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