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1. (a) The time independent wave function is (we notice that 36% and 64% add up to 100%)

Ψ(x) =
3

5
ψ1(x) +

4

5
ψ2(x)

From this we have to construct the time-dependent solution. We also have to take into
consideration that < x > is at a minimum at t = 0. We have to allow for a phase factor on
each one of the eigenfunctions.

Ψ(x, t) =
3

5
e−iθ1ψ1(x)e−i

3
2
~ωt/~+

4

5
e−iθ2ψ2(x)e−i

5
2
~ωt/~ =

3

5
e−iθ1ψ1(x)e−i3ωt/2+

4

5
e−iθ2ψ2(x)e−i5ωt/2

(1)
Now we turn to the condition < x > at a minimum at t = 0. We will make use of the
recursion relation for the eigenfunctions.

xun(x) =
b√
2

(√
n+ 1un+1(x) +

√
nun−1(x)

)
, where b =

1

α
=

√
~
mω

.

In the calculation for < x > we will need:

xψ1(x) =
1

α
√

2

(√
2ψ2(x) +

√
1ψ0(x)

)
=

1

α

(
ψ2 +

1√
2
ψ0

)
xψ2(x) =

1

α
√

2

(√
3ψ3(x) +

√
2ψ1(x)

)
=

1

α

(√
3√
2
ψ3 + ψ1

)

Now

< x >=

∫
(
3

5
eiθ1ψ∗1(x)ei3ωt/2 +

4

5
eiθ2ψ∗2(x)ei5ωt/2)x(

3

5
e−iθ1ψ1(x)e−i3ωt/2 +

4

5
e−iθ2ψ2(x)e−i5ωt/2)

Making use of the recursion relation we get

< x >=

∫
(
3

5
eiθ1ψ∗1(x)ei3ωt/2 +

4

5
eiθ2ψ∗2(x))ei5ωt/2 ·

1

α

[
3

5
e−iθ1e−i3ωt/2

(
ψ2(x) +

1√
2
ψ0(x)

)
+

4

5
e−iθ2e−i5ωt/2

(√
3√
2
ψ3(x)) + ψ1(x)

)]
Retaining the the non-orthogonal parts we arrive at

< x >=
12

25α

(
ei(ωt+θ2−θ1) + e−i(ωt+θ2−θ1)

)
=

24

25α
cos(ωt+ θ2 − θ1) (2)

The minimum of eq.2 at t = 0 occurs when θ2 − θ1 = π. The minimum value is

< x >= − 24

25α
(3)
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Ψ(x, t) =
3

5
e−iθ1ψ1(x)e−i3ωt/2 +

4

5
e−iθ2ψ2(x)e−i5ωt/2 =

= e−iθ1
(

3

5
ψ1(x)e−i3ωt/2 +

4

5
e−i(θ2−θ1)ψ2(x)e−i5ωt/2

)
(4)

Ψ(x, t) = e−iθ1
(

3

5
ψ1(x)e−i3ωt/2 +

4

5
e−iπψ2(x)e−i5ωt/2

)
(5)

Concluding that the time–dependent wave function is given by eq. 5.

(b) The momentum operator is −i~ ∂
∂x

we can use this on the two eigenfunction ψ1(x) and
ψ2(x). But we can also try to use the previous calculation for < x > and the relation
< p >= md<x>

dt
. Starting from < x > eq. 2

< x >=
24

25α
cos(ωt+ π) = − 24

25α
cos(ωt)

Now < p > will be

< p >= m
d

dt

24

25α
cos(ωt+ π) = −mω 24

25α
sin(ωt+ π) =

√
~mω

24

25
sin(ωt)

(c) The eigenfunctions ψ1(x) and ψ2(x) are eigenfunctions of the Hamiltonian and will not
change with time (energy is conserved). < E >= (0.36 · 3

2
+ 0.64 · 5

2
)~ω = 2.14~ω.

2. First normalise the wave function.
∫ a

0
A2x2(a− x)2dx = 1. This gives A =

√
30
a5

. The

eigenfunctions are ψn(x) =
√

2
a

sin(nπ
a
x) and the corresponding eigenvalues are En = n2π2~2

2ma2
.

a) To find the time evolution of the wave function Ψ(x, t) we need to expand the wave
function in the eigenfunctions ψn(x). The coefficients cn of the expansion are given by

cn =

∫ a

0

√
30

a5
x(a− x)

√
2

a
sin(

nπ

a
x) =

√
30

a5

∫ a

0

ax sin(
nπ

a
x)− x2 sin(

nπ

a
x)

Calculate the two following integrals:∫ a

0

x sin(
nπ

a
x) = − a

2

nπ
(−1)n and∫ a

0

x2 sin(
nπ

a
x) = − a

3

nπ
(−1)n +

2a3

n3π3
((−1)n − 1)

Evaluating for cn gives:

cn =

√
30

a5

∫ a

0

ax sin(
nπ

a
x)− x2 sin(

nπ

a
x) =

4
√

15

(nπ)3
(1− (−1)n) (6)

We calculate some of the coefficients (just for inspection):

c1 = 4
√

15
(nπ)3

2 = 0.999277 c2 = 0

c3 = 4
√

15
27(nπ)3

2 = 0.03701 c4 = 0

c5 = 4
√

15
125(nπ)3

2 = 0.0079942 c6 = 0
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We note that only cn where n is an odd integer are non-zero. This is used later. We can
now construct the time dependent wave function

Ψ(x, t) =
∑
n

cnψn(x)e−iEnt/~

where cn are given by eq. 6, ψn(x) are the eigenfunctions and En = n2π2~2
2ma2

are the
eigenenergies.

b) We are now starting the calculation of < x > as a function of time. We write:

< x >=

∫ a

0

∑
m

c∗mψ
∗
m(x)e+iEmt/~ x

∑
n

cnψn(x)e−iEnt/~ (7)

Inspection of eq. 7 reveals that we have to calculate the following integral:∫ a

0

sin(
mπ

a
x) x sin(

nπ

a
x)

Using the relation

2 sin(
α + β

2
) sin(

α− β
2

) = cos(β)− cos(α)∫ a

0

sin(
mπ

a
x) x sin(

nπ

a
x) =

1

2

∫ a

0

x
(

cos(
πx

a
(m− n))− cos(

πx

a
(m+ n))

)
(8)

There are two integrals to calculate and start with the one with m− n and assume m 6= n.
Start with∫ a

0

x cos(
πx

a
(m− n)) =

[
x

a

(m− n)π
sin(

πx

a
(m− n))

]a
0

−
∫ a

0

a

(m− n)π
sin(

πx

a
(m− n)) =

= 0 +

[
x

a2

(m− n)2π2
cos(

πx

a
(m− n))

]a
0

=
a2

(m− n)2π2
(−1)m−n − a2

(m− n)2π2
= 0

The reason for the last to equal zero is the both m and n are odd numbers (see previous
part a) so the difference is an even integer. From this calculation we can also conclude that
the integral ∫ a

0

x cos(
πx

a
(m+ n)) = 0

The case m = n will become: ∫ a

0

x cos(0) =

[
x2

2

]a
0

=
a2

2

Now we have calculated all the integrals in eq.8 and we can proceed to calculate < x > in
eq. 7. Note that the double sum in eq. 7 collapses into a single sum.

< x >=
∑
m

c∗m
2

a
e0 1

2

a2

2
cm =

a

2

∑
m

c∗mcm =
a

2

The sum
∑

m c
∗
mcm = 1 as the wave function is normalised. So the expectation value of x is

equal to a
2

and is independent of time.
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3. (a) There are two ways to reach a solution for this. The usual rule for the vibrational transition
is ∆n = ±1 and this would correspond to a photon of energy hν1 = ~ω, note only
approximately as we also need a change in the rotational quantum number l. Here we also
allow for anharmonic transitions ∆n = ±2 corresponding to photons of energy hν2 = 2~ω.
Considering the relation between wavelength and frequency for an electromagnetic wave
the photon of frequency ν2 will have only half the wavelength compared to the ν1 photon.
Hence the upper is the anharmonic transition and the lower is the harmonic transition.

The second route is to note that the anharmonic transitions are much rarer. Comparing
the scales for the intensity we note that the lower has an intensity of more than a factor of
1000 larger than the upper spectra. Hence events contributing to the upper spectra are
much rarer compared to events contributing to the lower spectra. We can draw the same
conclusion the upper is the anharmonic transition and the lower is the harmonic transition.

After this we do not need to consider the upper anharmonic spectra any more.

(b) Take data from the lower spectra as this is for the harmonic transitions ∆n = ±1.

The energy levels of a molecule, due to vibrations and rotation, are given by
En,l = (n+ 1

2
)~ω+ ~2

2I
l(l+ 1). The selection rule for a dipole transition is to change l by one

unit ∆l = ±1. In figure 1 a principal layout of the levels is shown. We first need to

Figure 1: Energy levels for a diatomic molecule. The long horisontal lines mark the l = 0 levels, with the
vibrational quantum number n to the right. The spacing in energy between these lines is ~ω. The states
with higher l-values (the rotational bands) give a dense sequence of states for each n-value. The arrows
show two possible transitions, one harmonic (n = 2→ n = 1) and one anharmonic (n = 2→ n = 0).

establish the relation between the spectra and the energy levels. For the lower spectra (of
the problem) we have ∆n = −1 (minus sign = emission spectra) and two possible ∆l = ±1.

We start with an analysis of the transitions between energy levels.

One series has ∆n = −1,∆l = −1: Ie a change from a level with l + 1 to a level with l.

The energy difference will be ∆E = ~ω+ ~2
2I

(l+ 1)(l+ 2)− ~2
2I
l(l+ 1) = ~2

I
(l+ 1), l = 0, 1, 2, 3,

which gives the following energies (for photons):

~ω + ~2
I
, ~ω + 2~2

I
, ~ω + 3~2

I
, ~ω + 4~2

I
, ...

A similar analysis gives the other series ∆n = −1,∆l = +1 (l→ l + 1):
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~ω − ~2
I
, ~ω − 2~2

I
, ~ω − 3~2

I
, ~ω − 4~2

I
, ...

All these energy differences (photon energies) will appear in the spectra. It is also clear
that there is always a change in the rotational quantum number l, ∆l = ±1. It therefore
seems as if there is a line missing for the unalowed transition ∆l = 0 in the spectrum
corresponding to the energy ~ω
The strength of the coupling constant is embedded in the in the frequency ω of the
oscillator, given by the missing line. The distance between the two atoms is given by the
energy difference between the lines from the rotational transitions.

Extrapolate the ’wave length’ of the missing line: λ = 4.6 + 4.7−4.6
34.8

23.0 = 4.67µm. The
energy of the missing line corresponds to ~ω of the oscillator.

The strength k of the bond is from ω =
√
k/µ where µ is the reduced mass. For carbon

monoxide we have the reduced mass µ = mCmO

mC+mO
= 12.011·15.999

12.011+15.999
= 6.86055u

= 6.86055 · 1.660538 · 10−27 = 1.13922 · 10−26 kg.

To calculate the distance between the atoms we have to use the moment of inertia I = µR2.
This is related to the energy difference between the rotational spectral lines ∆E = ~2

I
. The

energy of a photon is given by E = hc
λ

. As the given spektra are given as intensity as a
function of wave length λ we have two options to calculate for ∆E. We can estimate the λ
of two adjecent lines invert these two and calculate the difference. Or we do like this
differentiate E = hc

λ
and get dE = − hc

λ2
dλ we can now relate a difference in λ to a difference

in energy E.

From the graph we find the separation between 11 lines (10 spaces) is 32.8mm. The data is
for the missing centre line with 5 space to left and 5 to the right. This gives an estimate of
∆λ at the centre. This can be transformed to a line separation ∆λ = 0.10

34.8
32.8
10

= 0.00943µm.
From this we can calculate ∆E = hc

λ2
∆λ. Omit the minus sign as we calculate photon

energies.

NOTE In the literature one often finds spectra in units of λ−1 inverse wave length which in
principle is an energy scale. For that case the energy difference is written
∆E = ~2

I
= hc∆λ−1. Here ∆λ−1 = 1

λ2
− 1

λ1
where λ1, λ2 are two consecutive lines of the

rotational spectra. This ∆λ−1 can be related to ∆λ by ∆λ−1 = −∆λ
λ2

. The minus signs we
can omit as long as we keep in mind that a photon has a positive energy. Hence this equates
to ∆λ−1 = 0.00943

4.672
= 4.324 · 10−4(µm)−1 = 4.324 · 102(m)−1, at the centre (see above).

Now back to the solution.

Now we can calculate I = µR2 = mCmO

mC+mO
R2 to arrive at

R =

√
hλ2

4π2 c ∆λ µ
=

√
6.626 10−34 (4.67 · 10−6)2

4π2 · 2.997 108 · 0.00943 · 10−6 · 1.13922 10−26
= 1.066 · 10−10m (9)

≈ 1.07 · 10−10m or 1.1 · 10−10m.(10)

In wikepedia you find R = 1.12 10−10m for Carbon monoxide.

(c) The missing line would represent a transition with no change of the rotational quantum
number l, ie ∆l = 0. This is not allowed according to the selection rule that states that
∆l = ±1.
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4. Rewrite L2
z + L2

y = L2 − L2
x, which gives the Hamiltonian

H =
L2 − L2

x

2~2
+
L4
x

4~2
=
L2 − L2

x

4~2
.

Here we use the freedom to orient the coordinate system such that the appropriate operators are
Lx and L2 instead of the usual conventional Lz and L2. The eigenfunctions are not the ordinary
spherical harmonics but we know the eigenvalue spectrum that is the same. Lets denote the
eigenfunctions by Ỹl,mx

HỸl,mx =

(
L2 − L2

x

2~2
+
L2
x

4~2

)
Ỹl,mx =

(
l(l + 1)~2 −m2

x~2

2~2
+
m2
x~2

4~2

)
Ỹl,mx .

Hence the energies are:

El,mx =

(
l(l + 1)

2
− m2

x

4

)
.

An important issue is the relation between l and mx, ie l = 0, 1, 2, 3, ... and
mx = −l,−l + 1, ..., 0, l − 1, l. Or it may also be expressed through some kind of treatment
where it from the treatment is clear how l and mx are related. The lowest (ground state) energy
is E0,0 = 0 (l = 0 no rotation).

l = 1→ mx = 0,±1, gives E1,0 = 2
2

= 1eV E1,±1 = 3
4
eV

l = 2→ mx = 0,±1,±2, gives E2,0 = 3eV E2,±1 = 11
4

eV E2,±2 = 2eV

.

.

.

5. a) There are 4 states the system can have with the energys and (degeneracys) ~ω (1), 2~ω (2)
and 3~ω (1). The partition sum is given by:

Z =

n1=1,n2=1∑
n1=0,n2=0

e−(n1+n2+1.0)~ω/kBT = e−1.0~ω/kBT + 2e−2.0~ω/kBT + e−3.0~ω/kBT

b) There is one state of the lower energy and there are two states with the next higher energy.
The probability to find the system in a state of energy is proportional to the Boltzmann
factor, we arrive at the following equation for the probabilities.

1e−1,0~ω/kBT

Z
=

2e−2,0~ω/kBT

Z
(11)

and this reduces to e1~ω/kBT = 2 which evaluates to T = 1~ω
kB ln 2

.

c) The partition sum at this specific temperature is given by: (kBT = 1~ω
ln 2

) ( 1
kBT

= ln 2
1~ω ) we

arrive at the following

Z = e−1.0~ω/kBT + 2e−2.0~ω/kBT + e−3.0~ω/kBT = e−1.0 ln 2 + 2e−2.0 ln 2 + e−3.0 ln 2 =

1

2
+ 2

1

4
+

1

8
=

1

2
+

1

2
+

1

8
= 1 +

1

8
=

9

8
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The probability P will be (put Z into one of the terms in eq (11).

P =
e−1,0 ln 2

9
8

=
1

2
· 8

9
=

4

9
≈ 0.444...

As a check we can calculate for the state with the highest energy

P3 =
e−3,0 ln 2

9
8

=
1

8
· 8

9
=

1

9
≈ 0.111...

and we can easily conclude the probabilities add up to one.
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