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1. a) In Cartesian coordinates r2 = x2 + y2 + z2 and the Hamiltonian will be

H =
p2x
2m

+
p2y
2m

+
p2z
2m

+
mω2

2

(
x2 + y2 + z2

)
.

H = − 1

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+
mω2

2

(
x2 + y2 + z2

)
.

The Schroedinger (time independent) equation is

Hψ(x, y, z) = Eψ(x, y, z) (1)

Make the ansatz for the wave function ψ(x, y, z) = ψx(x)ψy(y)ψz(z)) . The Schroedinger
equation (1) now is(
− 1

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+
mω2

2

(
x2 + y2 + z2

))
ψx(x)ψy(y)ψz(z)) = Eψx(x)ψy(y)ψz(z))

This equation can be separated in the following way:(
− 1

2m

(
1

ψx(x)

∂2

∂x2
ψx(x) +

1

ψy(y)

∂2

∂y2
ψy(y) +

1

ψz(z)

∂2

∂z2
ψz(z)

)
+
mω2

2

(
x2 + y2 + z2

))
= E

This equation splits into three independent functions one depends only on x and one on y
and one on z. Let the constant E = Ex + Ey + Ez and the three dimensional SE splits inte
three one dimensional oscillators (below the one for x):(

− 1

2m

(
1

ψx(x)

∂2

∂x2
ψx(x)

)
+
mω2

2

(
x2
))

= Ex

Where Ex = ~ω(nx + 1
2
) and the same for Ey and Ez. The total energy is

E = ~ω(nx + ny + nz + 3
2
). nx, ny, nz are independent integers =0, 1, 2, 3, ... .

b) From the collection of formulas we find for the one dimensional oscillator

ψx0(x) =
(
mω
~
√
π

)1/2
e−

1
2
mωx2/~. We can now formulate the ground state nx = ny = nz = 0 for

the 3 dimensional oscillator:

ψ000(x, y, z) =

(
mω

~
√
π

)3/2

e−
1
2
mωx2/~ · e−

1
2
mωy2/~ · e−

1
2
mωz2/~

c) Now we turn to the question of degeneration d(n). As the energy is given by

E = ~ω(nx + ny + nz +
3

2
)
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we can assign n = nx + ny + nz to calculate the energy and d(n) to count the number of
states with the same energy, ie the number of combinations of nx, ny, nz that will result in
the same energy.

We may try some combinations to get a feeling of how it works:

n d(n) nxnynz
0 1 000
1 3 100, 010, 001
2 6 200,020, 002, 110, 101, 011
3 10 300, 030, 003, 111, 210, 201, 021, 120, 012, 102

In the case of n = 2 the combinations with nz = 0 have been marked with bold face These
three points form a line in the nx, ny plane this line contains 3 points (n+1). If we take the
case of n = 3 the combinations with nz = 0 will also form a line in the nx, ny plane, this
line containes 4 points (n+1). etc

Now wo consider the next layer with nz = 1. In the case of n = 2 the combinations with
nz = 1 there are 2 points. In the case of n = 3 the combinations with nz = 1 there are 3
points.

Now wo consider the next layer with nz = 2. In the case of n = 2 the combinations with
nz = 2 there is 1 point. In the case of n = 3 the combinations with nz = 2 there are 2
points.

Now wo consider the next layer with nz = 3. In the case of n = 2 the combination with
nz = 3 not possible. In the case of n = 3 the combinations with nz = 3 there is 1 point.

We see there is some order to these numbers as they form a triangle with n+1 points along
each side. We can express this as follows starting from the base with n+1 we reach the top
consisiting of only one point, this takes n+1 steps. There are n+1 rows and the average
number of points in each row is ((n+1) +1)/2. Hence we can express the degeneration d(n)
as the product of the number of rows times the average number points on each row:

d(n) = (n+ 1)
(n+ 2)

2

2. This is a 2 dimensional problem with a Schrödinger equation (where V (x, y) = 0) like

− ~2

2m

d2

dx2
Ψ(x, y)− ~2

2m

d2

dy2
Ψ(x, y) = EΨ(x, y)

This equation is separable and the ansatz Ψ(x, y) = ψ(x) ∗ ψ(y) gives the following result

− ~2

2m

d2

dx2
ψx(x)− ~2

2m

d2

dy2
ψy(y) = Exψx(x) + Eyψy(y)

ie two independent one dimensional Schrödinger equations one for the variable x and on for y.
We therefor solve the one dimensional problem first and after that we construct the two
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dimensional solution. To find the eigenfunctions we need to solve the Schrödinger equation
which is (in the region where V (x) is zero)

− ~2

2m

d2

dx2
Ψ = EΨ → d2

dx2
Ψ + k2Ψ = 0 where k2 =

2mE

~2

Solutions are of the kind:
Ψ(x) = A cos kx+B sin kx

Now we need to take the boundary conditions for the wave function Ψ
(
Ψ(−a

2
) = Ψ(a

2
) = 0

)
into

account.

A cos(−ka
2

) +B sin(−ka
2

) = 0 and A cos(
ka

2
) +B sin(

ka

2
) = 0

Adding the two conditions gives: cos(ka
2

) = 0 and subtracting them gives sin(ka
2

) = 0. These two
conditions cannot be fulfilled at the same time, so either A or B has to be zero. We start with

A = 0 and we get the following solution: The normalising constant B =
√

2
a

you get from the

condition
∫ a/2
−a/2 | Ψ |

2 dx = 1. The condition sin(ka
2

) = 0 gives ka
2

= π
2
∗ (even− integer). The

solution is:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 2, 4, 6, ... (2)

In a similar way the other function is analysed (A = 0) which gives: The condition cos(ka
2

) = 0
gives ka

2
= π

2
∗ (odd− integer). The solution is:

ψn(x) =

√
2

a
cos(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 3, 5, ... (3)

The eigenfunctions in the y direction are the same as for the x direction as the potential is
similar for this direction. Now we have the eigenfunctions of the one dimensional problem and
the solution to the 2 dimensional problem is readily produced. The eigenfunctions are:

Ψn,m(x, y) = ψn(x) · ψm(y) eigenenergys En,m = En + Emwhere n = 1, 2, , . and m = 1, 2, , . (4)

In the area where the potential is infinite the wave function is equal to zero.

An alternative route taken by many students has been to present a calculation with the
following boundary conditions: Ψ (Ψ(0) = Ψ(a) = 0) into account. In this case the solution is
for these boundary conditions:

ψn(x) =

√
2

a
sin(

nπx

a
) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 2, 3, ... (5)

This solution has to be adapted to the boundary conditions related to this exam problem:

ψn(x) =

√
2

a
sin(

nπ

a
(x+

a

2
)) with eigenenergys En =

n2π2~2

2Ma2
where n = 1, 2, 3, ... (6)

ψn(x) =
√

2
a

sin(nπx
a

+ nπ
2

) =
√

2
a

(
sin(nπx

a
) · cos(nπ

2
) + cos(nπx

a
) · sin(nπ

2
)
)
. We see that we recover

the solution in eq (2), (3) and (4) as we let n run from 1 to ∞.
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b) Now we turn to the question of parity, ie whether the wave function is odd or even under a
change of coordinates from (x, y) to (−x,−y). The one dimensional eigenfunctions in eq (2) and
(3) have a definite parity. The functions in (2) are odd whereas the functions in (3) are even. As
the eigenstates for the 2 dimensional system are formed from eq (4) ie products of functions that
are even or odd the total function itself will be either even or odd as well.

The four lowest eigenenergies are given by

En,m =
π2~2

2Ma2
(n2 +m2), where the 4 lowest are (n2 +m2) = 2, 5, 8, 10.

When we form the eigenstates we need to keep track of the parity of the ψn(x) and ψm(y). It is
therefore necessary to have the functions in the form like in eq (2) and (3) to identify the parity
as odd or even. This is difficult if you try with functions like eq (6) even though it is a correct
eigenstate it is hard to identify their parity.

E1,1 = one state (n2 +m2 = 2) even * even = even

E1,2 = E2,1 = two states (n2 +m2 = 5) odd * even = odd

E2,2 = one state (n2 +m2 = 8) odd * odd = even

E1,3 = E3,1 = two states (n2 +m2 = 10) even * even = even

So of the four energys (states) only one is odd and three are even.

3. Spin

Suppose a spin 1/2 particle is in the state

χ =
1√
6

(
2

1 + i

)
.

(a) What are the probabilities of getting +~/2 and −~/2 , if you mesure Sz?

(b) What are the probabilities of getting +~/2 and −~/2 , if you mesure Sy?

(3p)

The appropriate spin opperators are

Sy =
~√
2

(
0 −i
i 0

)
and Sz =

~√
2

(
0 1
1 0

)
a) For Sz the eigenvalues are +~

2
and −~

2
and the eigenspinors are for the positive eigenvalue(

1
0

)
and for the negative eigenvalue

(
0
1

)
. We have to express the given spinor in terms

of the eigenspinors to Sz in the following expansion:

χ =
1√
6

(
2

1 + i

)
=

1 + i√
6

(
0
1

)
+

2√
6

(
1
0

)
=

1 + i√
6
χ− +

2√
6
χ+

The probabillities are now just the absolute squares of the coefficients in the expansion
above.

The probabillity to get −~
2

is 2
6

= 1
3

The probabillity to get +~
2

is 4
6

= 2
3
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b) For Sy we have to do some calculations to find the appropriate eigenspinors. The
eigenvalue equation is

Syχ = λχ ⇔ ~
2

(
0 −i
i 0

)(
a
b

)
= λ

(
a
b

)
(7)

We find the eigenvalues from ∣∣∣∣ −λ −i~2i~
2
−λ

∣∣∣∣ = 0⇒ λ = ±~
2

The eigenspinors to Sy corresponding to the +~
2

we get from

~
2

(
0 −i
i 0

)(
a
b

)
= +

~
2

(
a
b

)
This gives two identical equations −ib = a. Now let a = 1 and hence b = i. This gives the
unnormalised spinor(

1
i

)
and after normalisation we have χy+ =

1√
2

(
1
i

)
For the negative eigenvalue we get the −a = −ib and hence the eigen spinor is

χy− =
1√
2

(
1
−i

)
Now we have to express the given spinor in terms of the eigenspinors to Sy:

χ =
1√
6

(
2

1 + i

)
We make use of the projection by operating from the left with χ∗y+:

χ∗y+χ =
1√
2

(1 − i) ∗ 1√
6

(
2

1 + i

)
=

2 +−i(1 + i)√
12

=
3− i√

12

For the other spinor we find (operating from the left with χ∗y−):

χ∗y−χ =
1√
2

(1 i) ∗ 1√
6

(
2

1 + i

)
=

2 + i(1 + i)√
12

=
1 + i√

12

Now we know howto expand χ in the eigenspinors of Sy

χ =
1√
6

(
2

1 + i

)
=

3− i√
12
· 1√

2

(
1
i

)
+

1 + i√
12
· 1√

2

(
1
−i

)
=

3− i√
12
· χy+ +

1 + i√
12
· χy−

The probabillities are now just the absolute squares of the coefficients in the expansion above.

The probabillity to get +~
2

is 10
12

= 5
6

The probabillity to get −~
2

is 2
12

= 1
6
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4. (a) i. Π̂C
(
cos(πx

L
) + cos(3πx

L
)
)

= C
(
cos(−πx

L
) + cos(−3πx

L
)
)

= +C
(
cos(πx

L
) + cos(3πx

L
)
)

, the
eigenvalue is +1

ii. Π̂Ce−a
√
x2+3y2+z2 = Ce−a

√
(−x)2+3(−y)2+(−z)2 = Ce−a

√
x2+3y2+z2 , the eigenvalue is +1

iii. Π̂Cf(r) (cos(θ) + cos3(θ)) eiφ = Cf(r) (cos(π − θ) + cos3(π − θ)) ei(φ+π) =
Cf(r) (− cos(θ) +−cos3(θ)) (−eiφ) = Cf(r) (cos(θ) + cos3(θ)) eiφ , the eigenvalue is
+1

(b) i. Π̂(4ψ+(x, y, z) + 2ψ−(x, y, z)) = +4ψ+(x, y, z) +−2ψ−(x, y, z) 6=
λ(4ψ+(x, y, z) + 2ψ−(x, y, z)) , not an eigenfunction.

ii. Π̂2(4ψ+(x, y, z) + 2ψ−(x, y, z)) = Π̂(+4ψ+(x, y, z) +−2ψ−(x, y, z)) =
4ψ+(x, y, z) + 2ψ−(x, y, z) , an eigenfunction with eigenvalue +1.

iii. Π̂e−αx = e+αx 6= e−αx not an eigenfunction and neither is e+αx. We can however form
linear combinations that have parity. The function eαx − e−αx has parity
Π̂e+αx − e−αx = e−αx − e+αx = −1(e+αx − e−αx) with eigenvalue -1. The function
e+αx + e−αx has parity Π̂e+αx + e−αx = e−αx + e+αx = +1(e+αx + e−αx) with eigenvalue
+1.

5. (a) The total wave function has to be normalised which implies that the sum of the squared
coefficients equals one. A2(22 + 32 + 11 + 12) = 1 resulting in A2 = 1

15
and hence A = 1√

15
.

(b) The probability is given by the absolute square of the coefficients.
(Ψ(r, t = 0) = 1√

15
(2ψ100(r)− 3ψ211(r) + ψ320(r)− ψ322(r)))

The probabilities are (in order) 4
15

, 9
15

, 1
15

, 1
15

. as a check they sum up to 1 as they should
do.

(c) The energy of a single eigenstate is given by: En = −13.56
n2 eV. The expectation value is

given by < E >= 4
15

(−13.56
12

) + 9
15

(−13.56
22

) + 1
15

(−13.56
32

) + 1
15

(−13.56
32

) =
−13.56( 4

15
+ 9

60
+ 1

135
+ 1

135
) = −13.56233

540
= −5.807868 ≈ −5.81 eV

The operator L2 has eigenvalues ~2l(l + 1). The expectation value is given by
< L2 >= 4

15
· 0 + 9

15
· (~21(1 + 1)) + 1

15
(~22(2 + 1)) + 1

15
(~22(2 + 1)) = 30

15
~2 = 2~2

The operator Lz has eigenvalues ~ml. The expectation value is given by
< Lz >= 4

15
· 0 + 9

15
· 1~ + 1

15
· 0 + 1

15
(2~) = 11

15
~
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