LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Course code	MTF067
Examination date	$2001-04-18$
Time	$09.00-14.00$

Examination in: Quantum Physics

Total number of problems: 6
Teacher on duty: Niklas Lehto
Tel: 720 85, Room E113A
Examiner: Niklas Lehto
The results are put up: 27 April 2001
Tel: 720 85, Room E113A
on the notice-board, building E
The marking may be scrutinised: after the results have been put up

Allowed aids:
FYSIKALIA, BETA, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 18 p .7 .5 points is required to pass the examination.

1. Five identical particles are placed in the potential

$$
V(x)=\left\{\begin{array}{cl}
0 & \text { for }
\end{array} \quad 0 \leq x \leq a, ~\left(\begin{array}{cc}
\\
+\infty & \text { for }
\end{array} x>a, x<0 . ~ \$\right.\right.
$$

There is no interaction between the particles other than the fact that they are identical.
(a) Calculate ground state energy if the particles are identical spin 0 bosons. ($1,5 \mathrm{p}$)
(b) Calculate ground state energy if the particles are identical spin $\frac{1}{2}$ fermions. ($1,5 \mathrm{p}$)
2. Calculate the commutator $\left[L_{z}, \sin (\phi)\right]$, where ϕ is the spherical angle $\phi=\arctan (y / x)+n \pi$.
3. Consider a free particle with mass m in one dimension. The wave function of the particle at $t=0$ is given by

$$
\psi(x, 0)=\cos ^{3} k x
$$

(a) Show that the state function $\psi(x, 0)$ can be written as a superposition of eigenfunctions of the free-particle Hamiltonian.
(b) Determine the energy of each plane wave in the superposition.
(c) Give the wave function $\psi(x, t)$ at an arbitrary time t.
4. Particles with energy E and mass m are coming from $-\infty$ towards the potential step:

$$
V(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
V_{0} & \text { for } & x>0
\end{array}\right.
$$

where $E>V_{0}>0$.
(a) Determine the wave functions in the two regions.
(b) Calculate the number of transmitted particles per time unit, if the incoming particle current is N_{0} particles per time unit.
5. A measurement of the spin component in the direction $\hat{n}=\cos \varphi \hat{x}+\sin \varphi \hat{y}$ gives the value $\hbar / 2$.
(a) Calculate the spin state corresponding to this measurement.
(b) What would the result be of a measurement in the z-direction?
6. An electron is in the ground state of tritium ${ }^{3} H$. A β-decay instantaneously changes the atom into a helium ion ${ }^{3} \mathrm{He}^{+}$.
(a) Calculate the probability that the electron is in the 2 s-state $(n=2, l=m=0)$ after the decay.
(b) Calculate the probability that the electron is in a 2 p-state $(n=2, l=1)$ after the decay.

GOOD LUCK!

