LULEÅ UNIVERSITY OF TECHNOLOGY
 Division of Physics

Course code	MTF067
Examination date	$2001-08-29$
Time	$09.00-14.00$

Examination in: Quantum Physics

Total number of problems: 6
Teacher on duty: Niklas Lehto
Tel: 720 85, Room E113A
Examiner: Niklas Lehto
The results are put up: 7 September 2001
Tel: 720 85, Room E113A
on the notice-board, building E
The marking may be scrutinised: after the results have been put up

Allowed aids:
FYSIKALIA, BETA, calculator,Collection of formulae

Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 18 p .7 .5 points is required to pass the examination.

1. A particle is placed in the potential

$$
V(x)=\left\{\begin{array}{cll}
0 & \text { for } & 0 \leq x \leq a \tag{1p}\\
+\infty & \text { for } & x>a, x<0
\end{array}\right.
$$

(a) Determine the eigenfunctions and energy eigenvalues of the particle.
(b) At $t=0$ the wave function of the particle is

$$
\psi(x, 0)=N x(x-a),
$$

where N is a normalization factor. What is the probability that a measurement of the energy, E, at $t=0$ will give a result

$$
\begin{equation*}
E \leq \frac{3 \hbar^{2} \pi^{2}}{m a^{2}} \tag{2p}
\end{equation*}
$$

2. A particle is placed in a spherically symmetric potential $V(r)$. The particle is in a stationary state described by

$$
\psi(\boldsymbol{r})=\psi(x, y, z)=N x y e^{-\alpha r}
$$

where N and α are constants.
(a) A measurement of L^{2} and L_{z} is done on the system. Calculate the possible values and their probabilities.
(b) Calculate the expectation values $\left\langle L^{2}\right\rangle$ and $\left\langle L_{z}\right\rangle$.
(c) The spherically symmetric potential $V(r) \rightarrow 0$ as $r \rightarrow \infty$. Calculate the potential.
3. Calculate the commutator $\left[L_{z}, \sin (\phi)\right]$, where ϕ is the spherical angle $\phi=\arctan (y / x)+n \pi$.
4. For a hydrogen atom the Hamiltonian is given by

$$
H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+\frac{e^{2}}{4 \pi \epsilon_{0} r}
$$

(a) Give the energy expression and the number of degenerate energy levels. The electron spin is neglected.
(b) If the electron spin is taken into account, then the spin-orbit interaction will introduce a perturbation in the Hamiltonian. In a simplified model the perturbation is ϵ / r^{3}. Calculate the first-order energy correction.
(c) What effect will the spin-orbit interaction have on the degenerate energy levels?
5. Particles with energy E and mass m are coming from $-\infty$ towards the potential step:

$$
V(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
V_{0} & \text { for } & x>0
\end{array}\right.
$$

where $E>V_{0}>0$.
(a) Determine the wave functions in the two regions.
(b) Calculate the number of transmitted particles per time unit, if the incoming particle current is N_{0} particles per time unit.
6. A measurement of the spin component in the direction $\hat{n}=\cos \varphi \hat{x}+\sin \varphi \hat{y}$ gives the value $\hbar / 2$.
(a) Calculate the spin state corresponding to this measurement.
(b) What would the result be of a subsequent measurement in the z-direction? (1p)

GOOD LUCK!

