LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Course code	MTF067
Examination date	$2001-12-17$
Time	$09.00-14.00$

Examination in: Quantum Physics

Total number of problems: 5
Teacher on duty: Johan Hansson
Examiner: Johan Hansson
The results are announced: 21 December 2001

Tel: 910 72, Room E102a
Tel: 910 72, Room E102a
on the notice-board, building E

The grading may be scrutinised: after the results have been announced
Allowed aids:
FYSIKALIA, BETA, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of points is 15 p .7 points (including bonus) is required to pass the examination.

1. Show, by explicit calculation, that any spherical harmonic (arbitrary l and m) is an eigenfunction of L_{z}. What are the possible eigenvalues, and what is their physical interpretation?
2. Calculate the expectation values $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for any given eigenfunction of a onedimensional (quantum mechanical) harmonic oscillator.
3. An electron in a hydrogen atom is in the state described by the wave function

$$
\begin{equation*}
\psi(\mathbf{r})=\frac{1}{6}\left[4 \psi_{100}(\mathbf{r})+3 \psi_{211}(\mathbf{r})-\psi_{210}(\mathbf{r})+\sqrt{10} \psi_{21-1}(\mathbf{r})\right] . \tag{1p}
\end{equation*}
$$

a) What is the expectation value of the energy?
b) What is the expectation value of \mathbf{L}^{2} ?
c) What is the expectation value of L_{z} ?
4. The spin-part of a spin- $1 / 2$ quantum mechanical system is given by

$$
\chi=\frac{1}{\sqrt{5}}(2|\uparrow\rangle+i|\downarrow\rangle) .
$$

a) Show that \mathbf{S}^{2} and S_{z} commute.
b) What are the possible eigenvalues of \mathbf{S}^{2} and S_{z} ? Are they simultaneously measurable?
c) Calculate the probabilities for obtaining these eigenvalues.
5. An electron is in the ground state of tritium ${ }^{3} \mathrm{H}$. A β-decay instantaneously changes the atom into a helium ion ${ }^{3} \mathrm{He}^{+}$.
(a) Calculate the probability that the electron is in the 2 s-state $(n=2, l=m=0)$ after the decay.
(b) Calculate the probability that the electron is in a 2 p-state $(n=2, l=1)$ after the decay.

GOOD LUCK!

