LULEÅ UNIVERSITY OF TECHNOLOGY
 Division of Physics

Course code	MTF067
Examination date	$2002-04-24$
Time	$09.00-14.00$

Examination in: Quantum Physics
Total number of problems: 5
Teacher on duty: Johan Hansson
Tel: 491072, Room E102a
Examiner: Johan Hansson
The results are announced: May 2, 2002
Tel: 491072, Room E102a
on the notice-board, building E
The grading may be scrutinised: after the results have been announced
Allowed aids: FYSIKALIA, BETA, calculator, ColLECTION of FORMULAE
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. The maximum number of points is 15 p .7 points is required to pass the examination (grade 3), 10.5 points for grade 4 , 13 points for grade 5 .

1. Derive the stationary Schrödinger equation from the more general time-dependent one. State the assumptions you make in each step of the derivation.
2. Calculate the expectation values $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for:
a) The ground state
b) The first excited state
of a one-dimensional (quantum mechanical) harmonic oscillator.
3. An electron in a hydrogen atom is in the state described by the wave function

$$
\begin{equation*}
\psi(\mathbf{r})=\frac{1}{6}\left[4 \psi_{100}(\mathbf{r})+3 \psi_{211}(\mathbf{r})-\psi_{210}(\mathbf{r})+\sqrt{10} \psi_{21-1}(\mathbf{r})\right] . \tag{1p}
\end{equation*}
$$

a) What is the expectation value of the energy?
b) What is the expectation value of \mathbf{L}^{2} ?
c) What is the expectation value of L_{z} ?
4. The spin-part of a spin- $1 / 2$ quantum mechanical system is given by

$$
\chi=N(2|\uparrow\rangle+i|\downarrow\rangle) .
$$

a) Calculate the normalization constant N.
b) What are the possible eigenvalues of \mathbf{S}^{2} and S_{z} ?

Are they simultaneously measurable?
c) Calculate the probabilities for obtaining these eigenvalues.
5. The Hamiltonian for an axially symmetric rotator is

$$
H=\frac{L_{x}^{2}+L_{y}^{2}}{2 I_{1}}+\frac{L_{z}^{2}}{2 I_{2}},
$$

where I_{1} and I_{2} are constants. What are the possible energy eigenvalues?

GOOD LUCK!

