LULEÅ UNIVERSITY OF TECHNOLOGY Division of Physics

Course code	MTF067
Examination date	2002-08-29
Time	09.00 - 14.00

Examination in: QUANTUM PHYSICS	
Total number of problems: 5	
Teacher on duty: Johan Hansson	Tel: 491072, Room E102a
Examiner: Johan Hansson	Tel: 491072, Room E102a
The results are announced: September 6, 2002	on the notice-board, building E
The grading may be scrutinised: after the results have been announced	

Allowed aids: FYSIKALIA, BETA, calculator, COLLECTION OF FORMULAE

Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. The maximum number of points is 15 p. 7 points is required to pass the examination (grade 3), 10.5 points for grade 4, 13 points for grade 5.

- 1. Using the operators S_x , S_y , S_z , show (by explicit calculation) that:
 - a) \mathbf{S}^2 is simultaneously measurable with any of the S_x , S_y , S_z .
 - b) Only *one* of the S_x , S_y , S_z can be measured at any one time. (3p)
- 2. The spin-part of a spin-1/2 quantum mechanical system is given by

$$\chi = N(3|\uparrow\rangle + i|\downarrow\rangle).$$

- a) What are the eigenvalues of S_z ?
- b) Calculate the probabilities for obtaining these different eigenvalues.
- c) Calculate the expectation value of S_z . (3p)
- 3. a) Calculate the expectation value of the *potential energy* for the one-dimensional (quantum mechanical) harmonic oscillator.
 - b) Show that the expectation value for the *kinetic energy* is equal to the result in a).
- 4. An electron in a hydrogen atom is in the state described by the wave function

$$\psi(\mathbf{r}) = \frac{1}{6} [4\psi_{100}(\mathbf{r}) + 3\psi_{211}(\mathbf{r}) - \psi_{210}(\mathbf{r}) + \sqrt{10}\psi_{21-1}(\mathbf{r})].$$

- a) What is the expectation value of the energy?
- b) What is the expectation value of \mathbf{L}^2 ?
- c) What is the expectation value of L_z ? (3p)

TURN PAGE!

(3p)

5. A particle in a spherically symmetric potential is in a state described by the wave packet

$$\psi(x,y,z) = C(xy + yz + zx)e^{-\alpha r^2}$$

What is the probability that a measurement of the square of the angular momentum yields 0? What is the probability that it yields $6\hbar^2$? If the value of l is found to be 2, what are the relative probabilities for m = 2, 1, 0, -1, -2? (3p)

GOOD LUCK !