LULEÅ UNIVERSITY OF TECHNOLOGY
 Division of Physics

Course code	MTF067
Examination date	$2002-08-29$
Time	$09.00-14.00$

Examination in: Quantum Physics

Total number of problems: 5
Teacher on duty: Johan Hansson
Tel: 491072, Room E102a
Examiner: Johan Hansson
The results are announced: September 6, 2002
Tel: 491072, Room E102a
on the notice-board, building E The grading may be scrutinised: after the results have been announced

Allowed aids: FYSIKALIA, BETA, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. The maximum number of points is 15 p .7 points is required to pass the examination (grade 3), 10.5 points for grade 4,13 points for grade 5.

1. Using the operators S_{x}, S_{y}, S_{z}, show (by explicit calculation) that:
a) S^{2} is simultaneously measurable with any of the S_{x}, S_{y}, S_{z}.
b) Only one of the S_{x}, S_{y}, S_{z} can be measured at any one time.
2. The spin-part of a spin- $1 / 2$ quantum mechanical system is given by

$$
\chi=N(3|\uparrow\rangle+i|\downarrow\rangle) .
$$

a) What are the eigenvalues of S_{z} ?
b) Calculate the probabilities for obtaining these different eigenvalues.
c) Calculate the expectation value of S_{z}.
3. a) Calculate the expectation value of the potential energy for the one-dimensional (quantum mechanical) harmonic oscillator.
b) Show that the expectation value for the kinetic energy is equal to the result in a).
4. An electron in a hydrogen atom is in the state described by the wave function

$$
\psi(\mathbf{r})=\frac{1}{6}\left[4 \psi_{100}(\mathbf{r})+3 \psi_{211}(\mathbf{r})-\psi_{210}(\mathbf{r})+\sqrt{10} \psi_{21-1}(\mathbf{r})\right] .
$$

a) What is the expectation value of the energy?
b) What is the expectation value of \mathbf{L}^{2} ?
c) What is the expectation value of L_{z} ?
5. A particle in a spherically symmetric potential is in a state described by the wave packet

$$
\psi(x, y, z)=C(x y+y z+z x) e^{-\alpha r^{2}}
$$

What is the probability that a measurement of the square of the angular momentum yields 0 ? What is the probability that it yields $6 \hbar^{2}$? If the value of l is found to be 2 , what are the relative probabilities for $m=2,1,0,-1,-2$?

GOOD LUCK!

