LULEÅ UNIVERSITY OF TECHNOLOGY

Division of Physics

Course code	MTF107
Examination date	$2003-12-19$
Time	$09.00-14.00$

Examination in: QuANTUM PHYSICS

Total number of problems: 5
Teacher on duty: Johan Hansson Tel: 491072, Room E102a
Examiner: Johan Hansson
The results are announced: January 7, 2004

Tel: 491072, Room E102a
on the notice-board, building E

The grading may be scrutinised: after the results have been announced
Allowed aids: Physics Handbook, ANY mathematical handbook (for example BETA), calculator
Define notations and motivate assumptions and approximations. You must present the solutions so that they are easy to follow! The maximum number of points is 15 p .7 points is required to pass the examination (grade 3), 10.5 points for grade 4,13 points for grade 5.

1. In a double-slit experiment with neutrons the wave function corresponding to a route through slit one is ψ_{1}, and through slit two it is ψ_{2}. Show mathematically (with formulas) and explain physically the difference in the probability distribution of N hits on the detector screen between:
i) First only one slit open ($\mathrm{N} / 2$ hits) then only the other ($\mathrm{N} / 2$ hits).
ii) Both slits open at the same time (N hits).
2. Derive normalized eigenstates, for spin- $1 / 2$ particles, to the spin-operator

$$
\begin{equation*}
S_{x} \cos \theta+S_{y} \sin \theta \tag{3p}
\end{equation*}
$$

3. Show that the probability conservation law

$$
\frac{\partial P}{\partial t}+\frac{\partial j}{\partial x}=0
$$

follows from the one-dimensional Schrödinger equation with a (real) potential.
The probabliity current is defined as $j=\frac{\hbar}{2 i m}\left[\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right]$.
4. An electron in an oscillating electric field is described by the Hamiltonian

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}-x e E_{0} \cos (\omega t)=0 \tag{3p}
\end{equation*}
$$

Calculate $d\langle x\rangle / d t, d\langle p\rangle / d t$ and $d\langle H\rangle / d t$.
5. A particle is described by the normalized wavefunction given by: $\psi(x)=2 \alpha \sqrt{\alpha} x e^{-\alpha x}$ for $x>0$; and $\psi(x)=0$ for $x<0$.
a) For what value of x does the probability density peak?
b) Calculate $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$.

