LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Course code	F0047T/MTF107
Examination date	$2010-03-16$
Time	$09.00-14.00$ (5 hours)

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Nils Almqvist
Examiner: Hans Weber
Tel: 492291 or 0705-898710, Room B254
Tel: 492088 or 0708-592088, Room B253
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Two dimensional Square well

A particle is placed in the potential (a 2 dimensional square well)

$$
V(x)=\left\{\begin{array}{cll}
0 & \text { for } & -\frac{a}{2} \leq x \leq \frac{a}{2} \text { and }-\frac{a}{2} \leq y \leq \frac{a}{2} \\
+\infty & \text { for } & x>\frac{a}{2}, x<-\frac{a}{2} \text { and } y>\frac{a}{2}, y<-\frac{a}{2} .
\end{array}\right.
$$

(a) Calculate (solve the Schrödinger equation) the eigenfunctions!
(b) The Hamiltonian commutes with the parity operator $P, P \Psi(x, y)=\Psi(-x,-y)=$ $\lambda \Psi(x, y)$ where the eigenvalue λ can take two possible values ± 1.
Write down the eigenstates corresponding to the four lowest energies in such a way that they are also eigenfunctions of the parity operator P. What is the parity of these states?

2. Measurement of spin

A measurement of the spin component in the direction $\hat{n}=\cos \varphi \hat{x}+\sin \varphi \hat{y}$ gives the value $\hbar / 2$.
(a) Calculate the spin state corresponding to this measurement.
(b) What would the result be of a measurement in the z-direction?

3. Eigenfunctions and uncertainty

An electron confined in a quantum well has five discrete energy levels $E_{1}=0.31 \mathrm{eV}, E_{2}=0.97$ $\mathrm{eV}, E_{3}=1.81 \mathrm{eV}, E_{4}=3.35 \mathrm{eV}, E_{5}=4.08 \mathrm{eV}$. It is in a state in which the probabilities associated with these energies are $\frac{1}{2}, \frac{2}{12}, \frac{1}{12}, \frac{3}{16}$ and $\frac{1}{16}$ respectively.
(a) Find the expectation value of its energy $\langle\hat{H}\rangle$ and the corresponding uncertainty $\Delta \hat{H}$.
(b) Obtain an expression for the wave function $\Psi(z)$ describing the state of the particle in terms of its energy eigenfunctions $\psi_{n}(z)$ at time $t=0$. Why is the expression not unique? Write down two different wave functions corresponding to the same values of $\langle\hat{H}\rangle$ and $\Delta \hat{H}$ that you found in (a).
(c) Assume the potential is the infinite square well of width L, and you would have calculated $\langle\hat{H}\rangle$ in some way. If one adiabatically changes L to $L / 2$ by how much would $\langle\hat{H}\rangle$ change? Adiabatically means we are not inducing transitions between levels in the system.

4. Harmonic oscillator.

A particle of mass m is confined to a one dimensional potential of the following form:

$$
V(x)=\frac{1}{2} k\left(x-x_{0}\right)^{2} .
$$

Show that the wave function of the ground state can be written as $A e^{a x^{2}+b x}$ and determine the constants a and b.
What are the possible values the energy of the particle can take?

5. Angular momentum and r in Hydrogen

An electron bound in a hydrogen atom is described by the following state:

$$
\psi(\boldsymbol{r})=\psi(x, y, z)=N x z e^{-\sqrt{x^{2}+y^{2}+z^{2}} / 3 a_{0}}
$$

where a_{0} is the Bohr radius and N is a constant (normalisation).
(a) A measurement of L^{2} and L_{z} is done on the system. Calculate the possible values and their probabilities.
(b) Calculate the expectation value of the electrons distance $\langle r\rangle$ from the nucleus.

