LULEÅ UNIVERSITY OF TECHNOLOGY
Division of Physics

Course code	F0047T/MTF107
Examination date	$2011-08-27$
Time	$09.00-14.00$ (5 hours)

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Hans Weber
Examiner: Hans Weber
Tel: 492088, Room E304
Tel: 492088 or 0708-592088, Room E304
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Molecular spectra

The observed rotational spectrum of the hydrogen chloride molecule consists of a set of equally spaced lines produced by the emission (or absorption) of electric dipole radiation. The spacing is $20.68 \mathrm{~cm}^{-1}$.
(a) Calculate the moment of inertia of the HCl molecule.
(b) What are the energies of its four lowest rotational energy levels?

Assuming that the moment of inertia of a diatomic molecule is of the form $I=m r^{2}$, estimate the mean separation r of the atom in the molecules. (Here $m=m_{H} m_{C l} /\left(m_{H}+m_{C l}\right)$ is the reduced mass of the molecule. Use the mass of the isotope ${ }^{35} \mathrm{Cl}: m_{C l}=35 m_{H}$.

2. Three-dimensional box well

A particle is placed in the potential (a 3 dimensional box well)

$$
V(x, y, z)=\left\{\begin{array}{cl}
0 & \text { for } \quad 0 \leq x \leq a \text { and } 0 \leq y \leq a \text { and } 0 \leq z \leq \frac{\mathbf{a}}{\mathbf{2}} \\
+\infty & \text { for } \quad x>a \text { or } x<0 \text { or } y>a \text { or } y<0 \text { or } z>\frac{\mathbf{a}}{\mathbf{2}} \quad \text { or } z<0 .
\end{array}\right.
$$

(a) Calculate (solve the Schrödinger equation) the eigenfunctions ?
(b) What are the 7 lowest eigenenergies ?
(c) What are the degeneracies of the states associated to these 7 lowest eigenenergies ?

3. Quantum rotator

The Hamiltonian (in units of eV) for a given axially symmetric quantum rotator is

$$
\begin{equation*}
H=\frac{L_{x}^{2}+L_{y}^{2}}{2 \hbar^{2}}+\frac{L_{z}^{2}}{3 \hbar^{2}} \tag{3p}
\end{equation*}
$$

What are the possible energies?
4. Angular momentum and r in Hydrogen

An electron bound in a hydrogen atom is described by the following state:

$$
\psi(\boldsymbol{r})=\psi(x, y, z)=N x z e^{-\sqrt{x^{2}+y^{2}+z^{2}} / 3 a_{0}}
$$

where a_{0} is the Bohr radius and N is a constant (normalisation).
(a) A measurement of L^{2} and L_{z} is done on the system. Calculate the possible values and their probabilities.
(b) Calculate the expectation value of the electrons distance $\langle r\rangle$ from the nucleus.

5. Harmonic oscillator solution

A particle is confined to a harmonic oscillator potential.
a) Show that the two functions $\psi^{+}(\xi)=A \xi e^{+\xi^{2} / 2}$ and $\psi^{-}(\xi)=B \xi e^{-\xi^{2} / 2}$ are eigenfunctions of the linear harmonic oscillator equation (in dimensionless form):

$$
\frac{d^{2} \psi(\xi)}{d \xi^{2}}+\left(\lambda-\xi^{2}\right) \psi(\xi)=0
$$

and determine the two eigenvalues $\lambda^{+}\left(\right.$for $\left.\psi^{+}(\xi)\right)$ and $\lambda^{-}\left(\right.$for $\left.\psi^{-}(\xi)\right)$. Where $\xi=\sqrt{\frac{m \omega}{\hbar}} x$ and $\lambda=\frac{2 E}{\hbar \omega}, A$ and B are constants.
b) Are the eigenfunctions physical acceptable (both/one or none)? Motivate!

