LULEÅ UNIVERSITY OF TECHNOLOGY
 Division of Physics

Course code	F0047T/MTF107
Examination date	$2012-03-13$
Time	$09.00-14.00$ (5 hours)

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Hans Weber
Examiner: Hans Weber
Tel: (49)2088, Room E304
Tel: (49)2088, Room E304

Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .7 .0 points are required to pass the examination. Grades 3: 7.0, 4: 9.5, 5: 12.0

1. Reflection and transmission at a potential step

Consider an electron of energy E incident on the potential step $V(x)$,

$$
V(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
V_{0} & \text { for } & x>0
\end{array}\right.
$$

where $V_{0}=3.5 \mathrm{eV}$. Calculate the reflection coefficient R and the transmission coefficient T
a) when $E=2.0 \mathrm{eV}$,
b) when $E=5.0 \mathrm{eV}$,
c) when $E=7.0 \mathrm{eV}$.

2. Time evolution of solution

A particle of mass m, which moves freely inside a one-dimensional infinite square well potential of length a, has the following initial wave function at time $t=0$:

$$
\psi(x, 0)=\frac{A}{\sqrt{2 a}} \sin \left(\frac{\pi x}{a}\right)+\frac{1}{2 \sqrt{a}} \sin \left(\frac{5 \pi x}{a}\right)+\frac{1}{\sqrt{8 a}} \sin \left(\frac{7 \pi x}{a}\right)
$$

where A is a real constant.
a) Find A so that $\psi(x, 0)$ is normalised.
b) If a measurement of the energy is carried out at $t=0$, what are the values that can be found and what are the corresponding probabilities? Calculate the average energy of the particle $<E>$.
c) Find the wave function $\psi(x, 0)$ at any later time t.

3. Operators and eigenfunctions

Are the following functions ψ eigenfunctions of the given operators \hat{A} ?
(a) $\psi(t)=\sin \omega t$ and $\hat{A}=i \hbar \frac{\partial^{2}}{\partial t^{2}}$.
(b) $\psi(z)=C\left(1+z^{2}\right)$ and $\hat{A}=-i \hbar \frac{\partial}{\partial z}$.
(c) $\psi(z)=C_{1} e^{i k z}+C_{2} e^{-i k z}$ and $\hat{A}=-\hbar^{2} \frac{\partial^{2}}{\partial z^{2}}$.
(d) $\psi(z)=C e^{-3 z}$ and $\hat{A}=-i \frac{\hbar}{2} \frac{\partial}{\partial z}$.
(e) $\psi(z)=C z e^{-\frac{1}{2} z^{2}}$ and $\hat{A}=\frac{1}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right)$.
(f) $\psi(z)=C e^{-\frac{1}{2} z^{2}}$ and $\hat{A}=\frac{1}{2}\left(z^{2}-\frac{\partial^{2}}{\partial z^{2}}\right)$.

4. Measurement of spin

A spin $\frac{1}{2}$ particle is prepared to be in an eigenstate to S_{z} with eigenvalue $+\frac{1}{2} \hbar$. A subsequent measurement of the spin in the direction $\hat{n}=\sin (\varphi) \hat{e}_{y}+\cos (\varphi) \hat{e}_{z}$ is made. The value of φ is $\pi / 4$.
(a) What is the probability to get the value $+\hbar / 2$ and $-\hbar / 2$ in this new direction \hat{n} ?
(b) What would the result (eigenvalue and probability) be of a subsequent measurement in the z-direction of the $+\hbar / 2$ state in a)?

5. Molecular spectra

In the rotational fine structure spectra of ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ the following spectral lines where detected $2824,0 \mathrm{~cm}^{-1} ; 2844,6 \mathrm{~cm}^{-1} ; 2865,3 \mathrm{~cm}^{-1} ; 2906,7 \mathrm{~cm}^{-1} ; 2927,4 \mathrm{~cm}^{-1} ; 2948,0 \mathrm{~cm}^{-1}$ och 2968,7 cm^{-1}.
a) There seems to be a line missing, explain why.
b) Using the data given calculate the distance between the atoms of the molecule.

