Course code	F0047T
Examination date	$2013-01-15$
Time	$15.00-20.00$ (5 hours)

Examination in: Kvantfysik / Quantum Physics
Total number of problems: 5
Teacher on duty: Hans Weber
Examiner: Hans Weber
Tel: (49)2088, Room E304
Tel: (49)2088, Room E304
Allowed aids: Fysikalia, Physics Handbook, Beta, calculator, Collection of formulae
Define notations and motivate assumptions and approximations. Present the solutions so that they are easy to follow. Maximum number of point is 15 p .8 .0 points are required to pass the examination. Grades 3: 8.0, 4: 10.0, 5: 12.0

1. Operators and eigenfunctions

Are the following functions ψ eigenfunctions of the given operators \hat{A} ?
(a) $\psi(t)=\cos \omega t$ and $\hat{A}=i \hbar \frac{\partial^{2}}{\partial t^{2}}$.
(b) $\psi(x)=e^{i k x}$ and $\hat{A}=\frac{\partial}{\partial x}$.
(c) $\psi(x)=e^{-a x^{2}}$ and $\hat{A}=\frac{\partial}{\partial x}$.
(d) $\psi(x)=\cos k x$ and $\hat{A}=\frac{\partial}{\partial x}$.
(e) $\psi(x)=k x$ and $\hat{A}=\frac{\partial}{\partial x}$.
(f) $\psi(x)=\sin k x$ and $\hat{A}=\hat{P}=$ the parity operator.

2. Quantum rotator

The Hamiltonian (in units of eV) for a given axially symmetric quantum rotator is

$$
\begin{equation*}
H=\frac{L_{x}^{2}+L_{y}^{2}}{3 \hbar^{2}}+\frac{L_{z}^{2}}{4 \hbar^{2}} \tag{3p}
\end{equation*}
$$

What are the possible energies?

3. Time evolution of solution

A particle of mass m, which moves freely inside a one-dimensional infinite square well potential of length a, has the following initial wave function at time $t=0$:

$$
\psi(x, 0)=\frac{A}{\sqrt{a}} \sin \left(\frac{\pi x}{a}\right)+\frac{1}{\sqrt{5 a}} \sin \left(\frac{5 \pi x}{a}\right)
$$

where A is a real constant.
a) Find A so that $\psi(x, 0)$ is normalised.
b) If a measurement of the energy is carried out at $t=0$, what are the values that can be found and what are the corresponding probabilities? Calculate the average energy of the particle $<E>$.
c) Find the wave function $\psi(x, 0)$ at any later time t.

4. Expectation values of the Harmonic oscillator in 1d

For the ground state of the one dimensional Harmonic oscillator calculate:
a) the four expectation values $\langle x\rangle,\langle p\rangle,\left\langle x^{2}\right\rangle,\left\langle p^{2}\right\rangle$ by explicit integration.
b) the uncertainty $\Delta x \cdot \Delta p$ and validate that the uncertainty principle holds.

5. Sudden change in the Harmonic oscillator potential in 1d

A particle of mass m is in the ground state of the one dimensional Harmonic oscillator potential $V_{1}(x)=\frac{1}{2} m \omega_{1}^{2} x^{2}$, when the potential suddenly changes to $V_{2}(x)=\frac{1}{2} m \omega_{2}^{2} x^{2}$ without initially changing the wave function.
a) What is the probability that a measurement of the particle energy would yield the result $\frac{1}{2} \hbar \omega_{2}$?
b) What is the probability that a measurement of the particle energy would yield the result $\frac{3}{2} \hbar \omega_{2}$?

